2024届甘肃省天水市清水县第六中学高二上数学期末联考试题含解析_第1页
2024届甘肃省天水市清水县第六中学高二上数学期末联考试题含解析_第2页
2024届甘肃省天水市清水县第六中学高二上数学期末联考试题含解析_第3页
2024届甘肃省天水市清水县第六中学高二上数学期末联考试题含解析_第4页
2024届甘肃省天水市清水县第六中学高二上数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省天水市清水县第六中学高二上数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是公差为3的等差数列.若,,成等比数列,则的前10项和()A.165 B.138C.60 D.302.椭圆的长轴长是()A.3 B.4C.6 D.83.等比数列中,,,则()A. B.C. D.4.丹麦数学家琴生(Jensen)是19世纪对数学分析作出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在区间内的导函数为,在区间内的导函数为,在区间内恒成立,则称函数在区间内为“凸函数”,则下列函数在其定义域内是“凸函数”的是()A. B.C. D.5.直线的倾斜角为()A.150° B.120°C.60° D.30°6.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.187.已知抛物线的焦点为F,点P为该抛物线上的动点,若,则当最大时,()A. B.1C. D.28.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离9.已知实数满足方程,则的最大值为()A.3 B.2C. D.10.已知等差数列的前项和为,若,,则()A. B.C. D.11.若命题为“,”,则为()A., B.,C., D.,12.函数的导函数的图像如图所示,则()A.为的极大值点B.为的极大值点C.为的极大值点D.为的极小值点二、填空题:本题共4小题,每小题5分,共20分。13.已知平面的法向量分别为,,若,则的值为___14.命题“若,则”的逆否命题为______15.数列满足,,则___________.16.正方体,点分别是的中点,则异面直线与所成角的余弦值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列前项和.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.19.(12分)已知函数(e为自然对数的底数),(),.(1)若直线与函数,的图象都相切,求a的值;(2)若方程有两个不同的实数解,求a的取值范围.20.(12分)如图在四棱锥中,底面是菱形,,平面平面,,,为的中点,是棱上的一点,且.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知圆的圆心为,且经过点.(1)求圆的标准方程;(2)已知直线与圆相交于、两点,求.22.(10分)已知函数在处有极值.(1)求常数a,b的值;(2)求函数在上的最值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由等差数列的定义与等比数列的性质求得首项,然后由等差数列的前项和公式计算【详解】因为,,成等比数列,所以,所以,解得,所以故选:A2、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.3、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D4、B【解析】根据基本初等函数的导函数公式求各函数二阶导函数,判断其在定义域上是否恒有,即可知正确选项.【详解】A:,则,显然定义域内有正有负,故不是“凸函数”;B:,则,故是“凸函数”;C:,则,故不是“凸函数”;D:,则,显然定义域内有正有负,故不是“凸函数”;故选:B5、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D6、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B7、B【解析】根据抛物线的定义,结合换元法、配方法进行求解即可.【详解】因为点P为该抛物线上的动点,所以点P的坐标设为,抛物线的焦点为F,所以,抛物线的准线方程为:,因此,令,,当时,即当时,有最大值,最大值为1,此时.故选:B8、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.9、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.10、B【解析】根据和可求得,结合等差数列通项公式可求得.【详解】设等差数列公差为,由得:;又,,.故选:B.11、B【解析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“,”的否命题为“,”,故选:B12、A【解析】由导函数的图像可得函数的单调区间,从而可求得函数的极值【详解】由的图像可知,在和上单调递减,在和上单调递增,所以为的极大值点,和为的极小值点,不是函数的极值点,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由平面互相垂直可知其对应的法向量也垂直,然后用空间向量垂直的坐标运算求解即可.【详解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案为:.14、若,则【解析】否定原命题条件和结论,并将条件与结论互换,即可写出逆否命题.【详解】由逆否命题的定义知:原命题的逆否命题为“若,则”.故答案为:若,则.15、【解析】根据题中所给的递推式得到数列具有周期性,进而得到结果.【详解】根据题中递推式知,可知数列具有周期性,周期为3,因为故故答案为:16、【解析】以为坐标原点建立空间直角坐标系,根据异面直线所成角的向量求法可求得结果.【详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,设正方体棱长为,则,,,,,,,即异面直线与所成角的余弦值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.【小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列为等差数列,所以.18、(1)(2)【解析】(1)通过构造新数列求解;(2)由(1)得,再研究其单调性,从而得到最值,再解不等式即可求解.【小问1详解】由,假设其变形为,则有,所以,又.所以,即.【小问2详解】由(1),所以,令,则,所以,所以是递减数列,所以,所以使得不等式对一切正整数n都成立,则,即,因为为正实数,所以.19、(1);(2).【解析】(1)根据导数的几何意义进行求解即可;(2)利用常变量分离法,通过构造新函数,由方程有两个不同的实数解问题,转化为两个函数的图象有两个交点问题,利用导数进行求解即可.【小问1详解】设曲线的切点坐标为,由,所以过该切点的切线的斜率为,因此该切线方程为:,因为直线与函数的图象相切,所以,因为直线与函数的图象相切,且函数过原点,所以曲线的切点为,于是有,即;【小问2详解】由可得:,当时,显然不成立,当时,由,设函数,,,当时,,单调递减,当时,,单调递减,当时,,单调递增,因此当时,函数有最小值,最小值为,而,当时,,函数图象如下图所示:方程有两个不同的实数解,转化为函数和函数的图象,在当时,有两个不同的交点,由图象可知:,故a的取值范围为.【点睛】关键点睛:利用常变量分离法,结合转化法进行求解是解题的关键.20、(1)见解析;(2).【解析】(1)推导出PQ⊥AD,从而PQ⊥平面ABCD,连接AC,交BQ于N,连接MN,则AQ∥BC,推导出MN∥PA,由此能证明PA∥平面BMQ(2)连结BD,以Q为坐标原点,以QA、QB、QP分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【详解】(1)由已知PA=PD,Q为AD的中点,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ⊂面PAD,∴PQ⊥平面ABCD,连接AC,交BQ于N,连接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△ANQ∽△BCN,,又,∴,∴MN∥PA,又MN⊂平面BMQ,PA⊄平面BMQ,∴PA∥平面BMQ(2)连结BD,∵底面底面是菱形,∴△ABD是正三角形,∴由(1)知PQ⊥平面ABCD,∴PQ⊥AD,PQ⊥BQ,以Q为坐标原点,以QA、QB、QP分别为x轴,y轴,z轴,建立空间直角坐标系,则Q(0,0,0),A(1,0,0),B(0,,0),P(0,0,),设平面BMQ的法向量=(x,y,z),∴,由(1)知MN∥PA,∴,∴,取z=1,得,平面BQP的法向量,设二面角M﹣BQ﹣P的平面角为θ,则cosθ=,∴二面角M﹣BQ﹣P的余弦值为21、(1);(2).【解析】(1)求出圆的半径长,结合圆心坐标可得出圆的标准方程;(2)求出圆心到直线的距离,利用勾股定理可求得.小问1详解】解:圆的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论