2023-2024学年西南大学附中数学高二上期末达标检测试题含解析_第1页
2023-2024学年西南大学附中数学高二上期末达标检测试题含解析_第2页
2023-2024学年西南大学附中数学高二上期末达标检测试题含解析_第3页
2023-2024学年西南大学附中数学高二上期末达标检测试题含解析_第4页
2023-2024学年西南大学附中数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年西南大学附中数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)2.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A B.C. D.3.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;4.已知双曲线的离心率为2,则()A.2 B.C. D.15.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.6.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含7.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点8.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.9.已知等差数列的前项和为,,,则()A. B.C. D.10.如图,在四面体中,,分别是,的中点,则()A. B.C. D.11.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.12.已知,,且,则向量与的夹角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数极值点的个数是______14.棱长为的正方体的顶点到截面的距离等于__________.15.已知,分别是双曲线的左、右焦点,P是其一条渐近线上的一点,且以为直径的圆经过点P,则的面积为___________.16.设P为圆上一动点,Q为直线上一动点,O为坐标原点,则的最小值为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形(1)证明:是中点;(2)求点到平面的距离18.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)19.(12分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.20.(12分)已知圆,点,点是圆上任意一点,线段的垂直平分线交直线于点,点的轨迹记为曲线.(1)求曲线的方程;(2)已知曲线上一点,动圆,且点在圆外,过点作圆的两条切线分别交曲线于点,.(i)求证:直线的斜率为定值;(ii)若直线与交于点,且时,求直线的方程.21.(12分)已知圆,直线过定点.(1)若与圆相切,求的方程;(2)若与圆相交于两点,且,求此时直线的方程.22.(10分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量线性运算的坐标表示即可得出答案.【详解】解:因为,,所以.故选:B.2、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C3、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.4、D【解析】由双曲线的性质,直接表示离心率,求.【详解】由双曲线方程可知,因为,所以,解得:,又,所以.故选:D【点睛】本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题能力,属于中档题型,一般求双曲线离心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.构造法:根据条件,可构造出的齐次方程,通过等式两边同时除以,进而得到关于的方程.5、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题6、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.7、C【解析】根据连续函数的极值和最值的关系即可判断【详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【点睛】本题主要考查函数的极值与最值的概念辨析,属于容易题8、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.9、C【解析】利用已知条件求得,由此求得.【详解】依题意,解得,所以.故选:C【点睛】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.10、A【解析】利用向量的加法法则直接求解.【详解】在四面体中,,分别是,的中点,故选:A11、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A12、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】通过导数判断函数的单调性即可得极值点的情况.【详解】因为,,所以在上恒成立,所以在上单调递增,所以函数的极值点的个数是0,故答案为:0.14、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.15、【解析】先得出渐近线方程和圆的方程,然后解出点P的纵坐标,进而求出面积.【详解】由题意,渐近线方程为:,,圆的方程为:,联立:,所以.故答案为:.16、4【解析】取点,可得,从而,,从而可求解【详解】解:由圆,得圆心,半径,取点A(3,0),则,又,∴,∴,∴,当且仅当直线时取等号故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)证明出平面,可得出,再利用等腰三角形的几何性质可证得结论成立;(2)计算出三棱锥的体积以及的面积,利用等体积法可求得点到平面的距离.【小问1详解】证明:在正三棱柱,平面,平面,则,因为是以为直角顶点的等腰直角三角形,则,,则平面,平面,所以,,因为为等边三角形,故点为的中点.【小问2详解】解:因为是边长为的等边三角形,则,平面,平面,则,即,所以,,,,设点到平面的距离为,,,解得.因此,点到平面距离为.18、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.19、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的两个根,根据根与系数之间的关系,即可求,;(2)根据题意,得出不等式恒成立,则,解不等式即可求出实数的范围.详解】解:(1)由题可知,,解得:,则-3,2是方程的两个根,且,所以由根与系数之间的关系得,解得,所以二次函数的解析式为:;(2)由于不等式恒成立,即恒成立,则,解得:,所以实数的范围为.【点睛】本题考查由一元二次不等式的解集求函数解析式,以及不等式恒成立问题求参数范围,考查根与系数的关系和一元二次函数的图象和性质,考查化简运算能力20、(1)(2)(i)答案见解析(ii)或【解析】(1)通过几何关系可知,且,由此可知点的轨迹是以点、为焦点,且实轴长为的双曲线,通过双曲线的定义即可求解;(2)(i)设点,,直线的方程为,将直线方程与双曲线方程联立利用韦达定理及求出,即得到直线的斜率为定值;(ii)由(i)可知,由已知可得,联立方程即可求出,的值,代入即可求出的值,即可得到直线方程.【小问1详解】由题意可知,∵,且,∴根据双曲线的定义可知,点的轨迹是以点、为焦点,且实轴长为的双曲线,即,,,则点的轨迹方程为;【小问2详解】(i)设点,,直线的方程为,联立得,其中,且,,,∵曲线上一点,∴,由已知条件得直线和直线关于对称,则,即,整理得,,,,即,则或,当,直线方程为,此直线过定点,应舍去,故直线的斜率为定值.(ii)由(i)可知,由已知得,即,当时,,,即,,,解得或,但是当时,,故应舍去,当时,直线方程为,当时,,即,,,解得(舍去)或,当时,直线方程为,故直线的方程为或.21、(1)或;(2)或.【解析】(1)由圆的方程可得圆心和半径,当直线斜率不存在时,知与圆相切,满足题意;当直线斜率存在时,利用圆心到直线距离等于半径可构造方程求得,由此可得方程;(2)当直线斜率不存在时,知与圆相切,不合题意;当直线斜率存在时,利用垂径定理可构造方程求得,由此可得方程.【小问1详解】由圆的方程知:圆心,半径;当直线斜率不存在,即时,与圆相切,满足题意;当直线斜率存在时,设,即,圆心到直线距离,解得:,,即;综上所述:直线方程为或;【小问2详解】当直线斜率不存在,即时,与圆相切,不合题意;当直线斜率存在时,设,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论