版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省江门市重点中学2023年高三下学期自主练习数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.2.设全集,集合,则=()A. B. C. D.3.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,()A. B. C. D.4.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在中,点D是线段BC上任意一点,,,则()A. B.-2 C. D.26.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.7.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.8.若2m>2n>1,则()A. B.πm﹣n>1C.ln(m﹣n)>0 D.9.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A., B.,C., D.,10.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()A. B.C. D.11.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.12.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中为虚数单位,则的模为_______________.14.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.15.已知复数,且满足(其中为虚数单位),则____.16.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.18.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.19.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.20.(12分)已知函数.(1)解不等式:;(2)求证:.21.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.22.(10分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.2、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.3、C【解析】
判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得.【详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,∴,设,则,,∴,.故选:C.【点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角.4、A【解析】
计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.5、A【解析】
设,用表示出,求出的值即可得出答案.【详解】设由,,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.6、D【解析】
由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.7、B【解析】
根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.8、B【解析】
根据指数函数的单调性,结合特殊值进行辨析.【详解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B.【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.9、C【解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,,所以.表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.10、C【解析】
将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.11、B【解析】
根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.【点睛】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.12、B【解析】
根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用复数模的计算公式求解即可.【详解】解:由,得,所以.故答案为:.【点睛】本题考查复数模的求法,属于基础题.14、【解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【详解】满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.15、【解析】
计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【详解】,所以,所以.故答案为:-8【点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.16、【解析】
由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【详解】因为为偶函数,在上有唯一零点,所以,∴,∴,∴为首项为2,公比为2的等比数列.所以,.故答案为:【点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
先求出,再求圆的半径和极坐标方程;(2)设求出,,再求出得解.【详解】(1)将化成直角坐标方程,得则,故,则圆,即,所以圆M的半径为.将圆M的方程化成极坐标方程,得.即圆M的极坐标方程为.(2)设,则,用代替.可得,【点睛】本题主要考查直角坐标和极坐标的互化,考查极径的计算,意在考查学生对这些知识的理解掌握水平.18、(1),(2)【解析】
(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,,即可求得数列的前项和.【详解】(1)因为,所,两式相减,整理得,当时,,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,,,即.【点睛】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给关系合理变形,发现其中的关系,裂项求和作为一类常用的求和方法,需要在平常的学习中多做积累常见的裂项方式.19、(Ⅰ);(Ⅱ)【解析】
(I)根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.(Ⅱ)根据(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【详解】(I)因为,所以,,,或,或,因为,所以所以;(Ⅱ)由余弦定理得:,所以,所以,当且仅当取等号,又因为,所以,所以【点睛】本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.20、(1);(2)见解析.【解析】
(1)代入得,分类讨论,解不等式即可;(2)利用绝对值不等式得性质,,,比较大小即可.【详解】(1)由于,于是原不等式化为,若,则,解得;若,则,解得;若,则,解得.综上所述,不等式解集为.(2)由已知条件,对于,可得.又,由于,所以.又由于,于是.所以.【点睛】本题考查了绝对值不等式得求解和恒成立问题,考查了学生分类讨论,转化划归,数学运算能力,属于中档题.21、(1),,表示以为圆心为半径的圆;为抛物线;(2)【解析】
(1)消去参数的直角坐标方程,利用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024广西玉林市容县冬季赴高校公开招聘教师19人补充笔试备考试题及答案解析
- 电影发行合同范本完整版3篇
- 2024年度医药研发合作合同3篇
- 2024年度大蒜购销:农产品供需协议书
- 二零二四年度玻璃幕墙工程保险合同
- 常见劳动合同范本(04版)
- 二零二四年物联网平台建设与技术合作合同3篇
- 仓库物业转让合同范本2024年度特供
- 拆迁烂尾楼施工合同范本3篇
- 二零二四年度常州仓储物流服务合同范本
- 2024冬季安全十防措施专题培训
- 《机械基础》试题集
- 《往复式压缩机气阀特性分析研究及结构优化设计》
- 2024新苏教版一年级数学册第三单元第1课《图形的初步认识》课件
- 第10课时-小人物-大情怀-单元总结-七年级语文下册(部编版)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 综合实践活动课《早餐与健康》优质课件
- 《中华民族共同体概论》考试复习题库(含答案)
- 国家开放大学《教育组织行为与管理案例》大作业参考答案
- 归档文件整理规则DA/T22—2015
- 安全生产组织机构保证体系框架图
评论
0/150
提交评论