




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
cm,2cmC.cm,cm,cm,1cm D.2cm,5cm,3cm,4cm【考点】比例线段.【分析】由比例线段的定义逐项进行判断即可.【解答】解:成比例线段是指四条线段中的两条线段的比和另外两条线段的比相等,故可利用较短两条线段的比与较长两条线段的比是否相等来判断,在A选项中,1:2≠3:4,故A不能构成比例线段;在B选项中,1:=2:2,故B能构成比例线段;在C选项中,1:≠:,故C不能构成比例线段;在D选项中,2:3≠4:5,故D不能构成比例线段;故选B.【点评】本题主要考查比例线段,掌握比例线段的定义是解题的关键,注意可以利用较短两条线段的比与较长两条线段的比是否相等来判断.15.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,2【考点】根与系数的关系.【专题】计算题;一次方程(组)及应用.【分析】根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【点评】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.16.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.12【考点】平行线分线段成比例.【分析】由在△ABC中,DE∥BC,根据平行线分线段成比例定理,即可得DE:BC=AD:AB,又由,DE=4,即可求得BC的长.【解答】解:∵,∴=,∵在△ABC中,DE∥BC,∴=,∵DE=4,∴BC=3DE=12.故选D.【点评】此题考查了平行线分线段成比例定理.此题难度不大,注意掌握比例线段的对应关系.17.如图△ABC≌△DEC,公共顶点为C,B在DE上,则有结论①∠ACD=∠BCE=∠ABD;②∠DAC+∠DBC=180°;③△ADC∽△BEC;④CD⊥AB,其中成立的是()A.①②③ B.只有②④ C.只有①和② D.①②③④【考点】相似三角形的判定;三角形的外角性质;全等三角形的性质.【专题】几何综合题;压轴题.【分析】首先根据全等三角形的性质,看能够得到哪些等角和等边,然后根据这些等量条件来判断各结论是否正确.【解答】解:∵△ABC≌△DEC,且C为公共顶点,∴∠ABC=∠E,∠ACB=∠DCE,BC=CE;由∠ACB=∠DCE,得∠ACD=∠BCE=∠ACB﹣∠BCD=∠DCE﹣∠BCD,由BC=CE,得∠CBE=∠E,∴∠ABC=∠CBE=∠E,∠ACD=∠BCE;又∵∠ABD=180°﹣∠ABC﹣∠CBE,∠BCE=180°﹣∠CBE﹣∠E,∴∠ABD=∠BCE=∠ACD,故①正确;∵△ABC≌△DEC,且C为公共顶点,∴AC=CD,即∠ACD=180°﹣2∠ADC;又∵∠BCE=180°﹣2∠E,且∠ACD=∠BCE,∴∠ADC=∠E=∠ABC;由已知的全等三角形,还可得:∠BAC=∠BDC,∴∠DAC+∠DBC=∠BAC+∠BAD+∠ABC+∠ABD=∠BAD+∠ADB+∠ABD=180°;故②正确;由②∠DAC+∠DBC=180°知,A、D、B、C四点共圆,由圆周角定理知:∠ADC=∠ABC=∠E;结合①②的证明过程知:△ADC、△BEC都是等腰三角形,且它们的底角相等,故△ADC∽△BEC,③正确;由于缺少条件,无法证明④的结论一定成立,故④错误;所以正确的结论为①②③,故选A.【点评】此题主要考查的是相似三角形及全等三角形的判定和性质,其中还涉及到三角形内角和定理、三角形的外角性质、等腰三角形的性质等知识,有一定难度.三.解答题18.解方程(1)x2﹣6x+5=0(配方法)(2)x2﹣x﹣12=0.(3)x2+x﹣3=0(公式法)(3)x(x﹣3)=x﹣3.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)利用配方法得到(x﹣3)2=4,然后利用直接开平方法解方程;(2)利用因式分解法解方程;(3)先计算出判别式的值,然后利用求根公式法解方程;(4)先移项得到x(x﹣3)﹣(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣6x+9=4,(x﹣3)2=4,x﹣3=±2,所以x1=5,x2=1;(2)(x﹣4)(x+3)=0,x﹣4=0或x+3=0,所以x1=4,x2=﹣3;(3)△=12﹣4×1×(﹣3)=13,x=,所以x1=,x2=;(4)x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0或x﹣1=0,所以x1=3,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.19.已知,求的值.【考点】比例的性质.【分析】设比值为k,然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:设===k≠0,则x=2k,y=3k,z=4k,所以,===﹣3.【点评】本题考查了比例的性质,利用“设k法”表示出x、y、z可以使计算更加简便.20.已知方程:(m2﹣1)x2+(m+1)x+1=0,求:(1)当m为何值时原方程为一元二次方程.(2)当m为何值时原为一元一次方程.【考点】一元二次方程的定义;一元一次方程的定义.【分析】(1)根据是整式方程中含有一个未知数且未知数的最高次的次数是二次的方程,且一元二次方程的二次项的系数不能为零,可得答案;(2)根据一元一次方程是整式方程中含有一个未知数且未知数的最高次的次数是一次的方程,可得二次项系数为零,一次项系数不能为零,可得答案.【解答】解:(1)当m2﹣1≠0时,(m2﹣1)x2+(m+1)x+1=0是一元二次方程,解得m≠±1,当m≠±1时,(m2﹣1)x2+(m+1)x+1=0是一元二次方程;(2)当m2﹣1=0,且m+1≠0时,(m2﹣1)x2+(m+1)x+1=0是一元一次方程,解得m=±1,且m≠﹣1,m=﹣1(不符合题意的要舍去),m=1.答:当m=1时,(m2﹣1)x2+(m+1)x+1=0是一元一次方程.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.21.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,=,求CE的长.【考点】平行线分线段成比例.【分析】由DE∥BC,根据平行线分线段成比例定理,即可得到==,再代入计算求得CE的长.【解答】解:∵DE∥BC,∴==,∵AE=6,∴CE=8.【点评】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意数形结合思想的应用.22.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果=6,求x的值.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】首先根据题意可得=(x+1)2﹣(1﹣x)(x﹣1)=6,再整理利用直接开平方法解方程即可.【解答】解:根据例题可得=(x+1)2﹣(1﹣x)(x﹣1)=6,整理得:2x2=4,两边直接开平方得:x=±.【点评】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.23.已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+2013)的值.【考点】一元二次方程的解.【分析】把x=m代入已知方程,得到m2﹣m=2,m2﹣2=m,然后代入所求的代数式进行求值即可.【解答】解:∵m是方程x2﹣x﹣2=0的一个实数根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+2013)=2×(+2013)=2×(+2013)=4028.【点评】本题考查了一元二次方程的解的定义.注意“整体代入”思想的应用.24.已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【考点】根的判别式.【专题】计算题.【分析】(1)根据一元二次方程的定义和判别式的意义得到m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>(2)根据(1)的结论得到m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,然后利用因式分解法解方程.【解答】解:(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,∴(3x+4)(x+2)=0,∴x1=﹣,x2=﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.25.如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=;(2)判断△ABC与△DEC是否相似,并证明你的结论.【考点】相似三角形的判定;正方形的性质.【专题】证明题;网格型.【分析】(1)观察可得:BF=FC=2,故∠FBC=45°;则∠ABC=135°,BC==2;(2)观察可得:BC、EC的长为2、,可得,再根据其夹角相等;故△ABC∽△DEC.【解答】解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.【点评】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.26.如图,D是△ABC内的一点,在△ABC外取一点E,使∠CBE=∠ABD,∠BDE=∠BAC.试说明△ABC∽△DBE.【考点】相似三角形的判定.【专题】证明题.【分析】(1)由相似三角形的“两角法”进行说明;(2)由两边及其夹角法(两组对应边的比相等且夹角对应相等的两个三角形相似)进行说明.【解答】证明:(1)∵∠BAD=∠BCE,∠ABD=∠CBE,∴△ABD∽△CBE;(2)∵由(1)知,△ABD∽△CBE.∴=,∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠CBD,即∠ABC=∠DBE,∴△ABC∽△DBE.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.27.某旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:一单位组织员工去该风景区旅游,共支付给春秋旅行社旅游费用27000元.请问:(1)该单位去该风景区旅游的人数是否超过25人?(2)该单位这次共有多少员工去该风景区旅游?【考点】一元二次方程的应用.【分析】(1)先求出x=25人时不优惠的旅游费用,与27000元比较即可作出判断;(2)首先根据共支付给春秋旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去天水湾风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.【解答】解:(1)当x=25人时,旅游费用为:25×1000=25000(元),而27000>25000,因此该单位去风景区旅游人数超过25人.(2)设该单位去风景区旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位去风景区旅游人数为30人.【点评】考查了一元二次方程的应用.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.28.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【专题】探究型.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,易证AP=EF,GH=BQ,△PDA∽△QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,易证四边形ABSR是矩形,由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门业工程合同协议书模板
- 阳光房搭建合同协议范本
- 煅烧车间承包合同协议书
- 生物信息咨询费合同范本
- 消防施工合同终止协议书
- 江苏商标转让协议书模板
- 防盗玻璃承包协议书范本
- 自媒体账号归属合同范本
- 湛江复印机租赁合同范本
- 自建危房拆除赔偿协议书
- GB/T 25156-2020橡胶塑料注射成型机通用技术要求及检测方法
- 墙面抹灰施工方案35316
- 废弃物分类、清运、处理流程图
- 专职安全员工作培训课件
- 消防工程施工技术交底(全套)
- 河北省保定市各县区乡镇行政村村庄村名居民村民委员会明细
- 陕西润中 60万吨-年甲醇生产装置技术改造项目变更环境影响报告书
- 股份制商业银行监管政策考核试题附答案
- 有限空间外包作业管理制度管理办法
- 鼎力软件操作鼎立pilot navig操作手册
- 国际篮球联合会(FIBA)标准篮球记录表.xls
评论
0/150
提交评论