北师大版 小学四年级上册同步备课课件 2.2 相交与垂直_第1页
北师大版 小学四年级上册同步备课课件 2.2 相交与垂直_第2页
北师大版 小学四年级上册同步备课课件 2.2 相交与垂直_第3页
北师大版 小学四年级上册同步备课课件 2.2 相交与垂直_第4页
北师大版 小学四年级上册同步备课课件 2.2 相交与垂直_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版

小学四年级上册同步备课课件

2.2

相交与垂直可爱/纯真/童年/烂漫CONTENTSContents相交线的定义和特征互相垂直的定义和判定点到直线的距离PART1相交线的定义和特征相交线的定义相交线有两个交点,交点处两条直线重合03相交线的交点可以是任意点,也可以是线段的端点04两条直线相交,形成一个角相交线是指两条直线在同一平面内相交两条直线相交,形成一个角01相交线有两个交点02相交线可以形成四个角,其中两个角相等,另外两个角互补03相交线可以形成两个对顶角,对顶角相等04相交线的特征建筑设计:相交线在建筑设计中用于确定建筑物的位置和形状。01交通规划:相交线在交通规划中用于确定道路和铁路的交叉点和路线。02艺术创作:相交线在艺术创作中用于表现物体的立体感和空间感。03数学教育:相交线在数学教育中用于帮助学生理解和掌握几何图形的基本概念和性质。04相交线在生活中的应用PART2互相垂直的定义和判定两条直线互相垂直,如果它们所在的平面内,没有其他直线与它们相交,且所成的角是直角。两条直线互相垂直,如果它们所成的角是90度。两条直线相交,如果它们所成的角是直角,那么这两条直线互相垂直。两条直线互相垂直,如果它们所在的空间内,没有其他直线与它们相交,且所成的角是直角。互相垂直的定义01两条直线相交,如果它们所成的四个角中有三个角是直角,那么这两条直线互相垂直。两条直线相交,如果它们所成的四个角都是直角,那么这两条直线互相垂直。两条直线相交,如果它们所成的四个角中有两个角是直角,那么这两条直线互相垂直。两条直线相交,如果它们所成的四个角中有一个角是直角,那么这两条直线互相垂直。020304互相垂直的判定方法垂直关系:两条直线互相垂直,即一条直线与另一条直线的延长线相交成直角。01性质1:在同一平面内,如果一条直线与另一条直线垂直,那么这两条直线的延长线也互相垂直。02性质2:在同一平面内,如果一条直线与另一条直线垂直,那么这两条直线的夹角为90度。03性质3:在同一平面内,如果一条直线与另一条直线垂直,那么这两条直线的斜率之积为-1。04互相垂直的性质PART3点到直线的距离点到直线的距离定义直线上任意一点到直线外任意一点的距离直线上任意一点到直线外任意一点的距离直线上任意一点到直线外任意一点的距离直线上任意一点到直线外任意一点的距离直线上任意一点到直线上任意一点的距离直线上任意一点到直线外任意一点的距离直线上任意一点到直线外任意一点的距离直线上任意一点到直线外任意一点的距离直线上任意一点到直线上任意一点的距离直线上任意一点到直线外任意一点的距离贰壹叁01040203利用公式:点(x0,y0)到直线Ax+By+C=0的距离为|Ax0+By0+C|/sqrt(A^2+B^2)利用两点间距离公式:点(x0,y0)到直线上两点(x1,y1)和(x2,y2)的距离为|(x1-x0)^2+(y1-y0)^2|/sqrt((x1-x2)^2+(y1-y2)^2)利用向量法:点(x0,y0)到直线的方向向量(A,B)的距离为|A(x1-x0)+B(y1-y0)|/sqrt(A^2+B^2)利用解析几何法:点(x0,y0)到直线上任意一点的距离为|(x0-x1)^2+(y0-y1)^2|/sqrt((x1-x2)^2+(y1-y2)^2)计算点到直线的距离的方法垂线段是连接直线外一点与直线上最近的一点的线段。垂线段的长度是点到直线的距离。垂线段的长度是点到直线的距离的最小值。垂线段的长度是点到直线的距离的最大值。垂线段最短的性质PART4平行线与垂直线的画法21确定两个点:在平面上确定两个点作为平行线的起点和终点。检查平行:用直尺或三角尺检查新画的直线与原来的直线是否平行。连接两点:用直尺或三角尺连接两个点,得到一条直线。画平行线:在直线上任意取一点,用直尺或三角尺沿着直线的方向画一条直线,这条直线与原来的直线平行。43平行线的画法3241确定两个点:首先确定两个点,作为垂直线的两个端点。调整画法:如果需要调整直线的位置或方向,可以重新确定端点,然后按照步骤2和3进行画线。连接两个点:使用直尺或三角板,将两个点连接起来,形成一条直线。检查垂直度:检查直线是否与给定的直线或平面垂直,可以通过观察或测量角度来确认。垂直线的画法按住Shift键,拖动鼠标,确定直线的终点01选择垂直线工具,在画布上点击鼠标左键,确定直线的起点02松开Shift键,即可绘制出垂直线03打开画图工具,选择直线工具04在画布上点击鼠标左键,确定直线的起点05按住Shift键,拖动鼠标,确定直线的终点06松开Shift键,即可绘制出平行线07利用画图工具绘制平行线和垂直线PART5相交线与平行线、垂直线的应用证明几何性质:相交线可以帮助证明几何图形的性质,如平行、垂直、对称等。分割图形:相交线可以将一个复杂的几何图形分割成多个简单的几何图形,便于分析和解决问题。计算面积和周长:相交线可以帮助计算几何图形的面积和周长,如三角形、四边形等。确定图形的边长和角度:相交线可以帮助确定几何图形的边长和角度,从而进行精确的测量和计算。相交线在几何图形中的应用01.平行线可以用来确定图形的形状和位置02.平行线可以用来测量图形的长度和角度03.平行线可以用来解决几何问题,如三角形、四边形等04.平行线可以用来绘制图形,如平行四边形、矩形等平行线在几何图形中的应用确定角度:垂直线可以帮助确定角度,如直角、锐角、钝角等。分割图形:垂直线可以将一个图形分割成两个或多个部分,便于分析和计算。证明平行:垂直线可以用来证明两条直线是否平行,如通过证明两条直线与第三条直线垂直来证明它们平行。计算长度:垂直线可以帮助计算线段的长度,如通过垂直于直线的垂线来计算线段的长度。02030401垂直线在几何图形中的应用PART6数学史上的垂直线与平行线古希腊时期:欧几里得在《几何原本》中首次提出了平行线和垂直线的概念中世纪时期:阿拉伯数学家阿尔-花拉子米在《代数》一书中进一步阐述了平行线和垂直线的性质17世纪:笛卡尔创立解析几何,将几何问题转化为代数问题,使得平行线和垂直线的研究更加深入19世纪:非欧几何学的发展,使得平行线和垂直线的概念得到了扩展和深化垂直线和平行线的历史背景分析学:在分析学中,垂直线和平行线可以用来描述函数的性质,例如导数、积分等。几何学:垂直线和平行线是几何学的基础概念,用于描述空间中的位置关系和形状。代数:在代数中,垂直线和平行线可以用来表示方程组的解,例如线性方程组。计算机科学:在计算机科学中,垂直线和平行线可以用来表示数据的存储和传输,例如数据库、网络协议等。02030401垂直线和平行线在现代数学中的应用040301垂直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论