




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有---------------------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有--------------2007年普通高等学校招生全国统一考试理科数学(海南卷)第=1\*ROMANI卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解析】是对的否定,故有:答案:C2.【解析】答案:D3.【解析】排除B、D,排除C。也可由五点法作图验证。答案:A4.【解析】答案:D5.【解析】由程序知,答案:C6.【解析】由抛物线定义,即:.答案:C7.【解析】答案:D8.【解析】如图,答案:B9.【解析】答案:C10.【解析】曲线在点处的切线斜率为,因此切线方程为则切线与坐标轴交点为所以:答案:D11.【解析】答案:B12.【解析】如图,设正三棱锥的各棱长为,则四棱锥的各棱长也为,于是答案:B第=2\*ROMANII卷二、填空题:本大题共4小题,每小题5分.13.【解析】如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:答案:314.【解析】答案:-115.【解析】答案:16.【解析】由题意可知有一个工厂安排2个班,另外三个工厂每厂一个班,共有种安排方法。答案:240三、解答题:解答应写出文字说明,证明过程或演算步骤.17.【解析】在中,.由正弦定理得.所以.在中,.18.【解析】(Ⅰ)证明:由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面.(Ⅱ)解法一:取中点,连结,由(Ⅰ)知,得.为二面角的平面角.由得平面.所以,又,故.所以二面角的余弦值为.解法二:以为坐标原点,射线分别为轴、轴的正半轴,建立如图的空间直角坐标系.设,则.的中点,..故等于二面角的平面角.,所以二面角的余弦值为.19.【解析】(Ⅰ)由已知条件,直线的方程为,代入椭圆方程得.整理得①直线与椭圆有两个不同的交点和等价于,解得或.即的取值范围为.(Ⅱ)设,则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数.20.(本小题满分12分)如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为.假设正方形的边长为2,的面积为1,并向正方形中随机投掷个点,以表示落入中的点的数目.(=1\*ROMANI)求的均值;(=2\*ROMANII)求用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率.附表:【解析】每个点落入中的概率均为.依题意知.(Ⅰ).(Ⅱ)依题意所求概率为,.21.【解析】(Ⅰ),依题意有,故.从而.的定义域为,当时,;当时,;当时,.从而,分别在区间单调增加,在区间单调减少.(Ⅱ)的定义域为,.方程的判别式.(ⅰ)若,即,在的定义域内,故的极值.(ⅱ)若,则或.若,,.当时,,当时,,所以无极值.若,,,也无极值.(ⅲ)若,即或,则有两个不同的实根,.当时,,从而有的定义域内没有零点,故无极值.当时,,,在的定义域内有两个不同的零点,由根值判别方法知在取得极值.综上,存在极值时,的取值范围为.的极值之和为.22.【解析】以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ),,由得.所以.即为的直角坐标方程.同理为的直角坐标方程.(Ⅱ)由解得.即,交于点和.过交点的直线的直角坐标方程为.2008年普通高等学校招生全国统一考试理科数学(海南卷)数学(理科)参考答案一、选择题1.B 2.B 3.D 4.C 5.A 6.B7.C 8.D 9.A 10.D 11.A 12.C二、填空题13. 14. 15.16.1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).3.甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题17.解:ABCDPxyzH(Ⅰ)设的公差为,由已知条件,ABCDPxyzH所以.(Ⅱ).所以时,取到最大值.18.解:如图,以为原点,为单位长建立空间直角坐标系.则,.连结,.在平面中,延长交于.设,由已知,由可得.解得,所以.(Ⅰ)因为,所以.即与所成的角为.(Ⅱ)平面的一个法向量是.因为,所以.可得与平面所成的角为.19.解:(Ⅰ)由题设可知和的分布列分别为Y1510P0.80.2Y22812P,,,.(Ⅱ),当时,为最小值.20.解:(Ⅰ)由:知.设,在上,因为,所以,得,.在上,且椭圆的半焦距,于是消去并整理得,解得(不合题意,舍去).故椭圆的方程为.(Ⅱ)由知四边形是平行四边形,其中心为坐标原点,因为,所以与的斜率相同,故的斜率.设的方程为.由消去并化简得.设,,,.因为,所以..所以.此时,故所求直线的方程为,或.21.解:(Ⅰ),于是解得或因,故.(Ⅱ)证明:已知函数,都是奇函数.所以函数也是奇函数,其图像是以原点为中心的中心对称图形.而.可知,函数的图像按向量平移,即得到函数的图像,故函数的图像是以点为中心的中心对称图形.(Ⅲ)证明:在曲线上任取一点.由知,过此点的切线方程为.令得,切线与直线交点为.令得,切线与直线交点为.直线与直线的交点为.从而所围三角形的面积为.所以,所围三角形的面积为定值.23.解:(Ⅰ)是圆,是直线.的普通方程为,圆心,半径.的普通方程为.因为圆心到直线的距离为,所以与只有一个公共点.(Ⅱ)压缩后的参数方程分别为:(为参数);:(t为参数).化为普通方程为::,:,联立消元得,其判别式,所以压缩后的直线与椭圆仍然只有一个公共点,和与公共点个数相同.2009年普通高等学校招生全国统一考试理科数学(海南卷)参考答案选择题(每小题5分,共60分)(1)【答案】B【解析】直接利用交集性质求解,或者画出数轴求解.(2)【答案】D【解析】=(3)【答案】B【解析】由已知|a|=2,|a+2b|2=a2+4a·b+4b2=4+4×2×1×cos60°+4=12∴(4)【答案】B【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径EQ\r(2)即可.(5)【答案】A【解析】直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种;间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.(6)【答案】B【解析】设公比为q,则=1+q3=3q3=2,于是(7)【答案】D【解析】y’=,当x=1时切线斜率为k=-2(8)【答案】B【解析】由图象可得最小正周期为EQ\f(2π,3),于是f(0)=f(EQ\f(2π,3)),注意到EQ\f(2π,3)与EQ\f(π,2)关于EQ\f(7π,12)对称,所以f(EQ\f(2π,3))=-f(EQ\f(π,2))=(9)【答案】A【解析】由于f(x)是偶函数,故f(x)=f(|x|);∴得f(|2x-1|)<f(),再根据f(x)的单调性;得|2x-1|<解得<x<(10)【答案】C【解析】月总收入为S,因此A>0时归入S,判断框内填A>0支出T为负数,因此月盈利V=S+T(11)【答案】C【解析】由于G是PB的中点,故P-GAC的体积等于B-GAC的体积在底面正六边形ABCDER中BH=ABtan30°=AB而BD=AB故DH=2BH于是VD-GAC=2VB-GAC=2VP-GAC(12)【答案】C【解析】由题意①②所以,即2令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1),∴5-2t=2log2(t-1)与②式比较得t=x2;于是2x1=7-2x2)(13)【答案】1013【解析】=1013(14)【答案】【解析】∵Sn=na1+n(n-1)d∴S5=5a1+10d,S3=3a1+3d∴6S5-5S3=30a1+60d-(15a1+15d)=15a1+45d=15(a1+3d)=15a4(15)【答案】4【解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,体积等于×2×4×3=4(16)【答案】9【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F’(4,0),于是由双曲线性质|PF|-|PF’|=2a=4而|PA|+|PF’|≥|AF’|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立.(17)解:在△ABC中,∠DAC=30°,∠ADC=60°-∠DAC=30,所以CD=AC=0.1又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA,
……5分在△ABC中,即AB=因此,BD=故B,D的距离约为0.33km。(18)(18)(I)解法一:取CD的中点G,连接MG,NG。设正方形ABCD,DCEF的边长为2,则MG⊥CD,MG=2,NG=.因为平面ABCD⊥平面DCED,所以MG⊥平面DCEF,可得∠MNG是MN与平面DCEF所成的角。因为MN=,所以sin∠MNG=为MN与平面DCEF所成角的正弦值……6分解法二:设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.则M(1,0,2),N(0,1,0),可得=(-1,1,2).又=(0,0,2)为平面DCEF的法向量,可得所以MN与平面DCEF所成角的正弦值为cos·……6分(Ⅱ)假设直线ME与BN共面,……8分则AB平面MBEN,且平面MBEN与平面DCEF交于EN由已知,两正方形不共面,故AB平面DCEF。又AB//CD,所以AB//平面DCEF。面EN为平面MBEN与平面DCEF的交线,所以AB//EN。又AB//CD//EF,所以EN//EF,这与EN∩EF=E矛盾,故假设不成立。所以ME与BN不共面,它们是异面直线.……12分(19)(19)解:(Ⅰ)依题意X的分列为01234P(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,,所求的概率为………12分(20)(20)解:(Ⅰ)由题意,c=1,可设椭圆方程为,解得,(舍去)所以椭圆方程为。……………4分(Ⅱ)设直线AE方程为:,代入得设,,因为点在椭圆上,所以………8分又直线AF的斜率与AE的斜率互为相反数,在上式中以—K代K,可得所以直线EF的斜率即直线EF的斜率为定值,其值为。……12分(21)(21)解:(1)的定义域为。2分(i)若即,则故在单调增加。(ii)若,而,故,则当时,;当及时,故在单调减少,在单调增加。(iii)若,即,同理可得在单调减少,在单调增加.(II)考虑函数则由于1<a<5,故,即g(x)在(4,+∞)单调增加,从而当时有,即,故,当时,有·········12分(23)解:(Ⅰ)由从而C的直角坐标方程为(Ⅱ)M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为所以直线OP的极坐标方程为2010年普通高等学校招生全国统一考试理科数学(宁夏、海南卷)第=1\*ROMANI卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.【答案】D解析:由已知得,所以.(2)【答案】A解析:,所以.另解:,下略.(3【答案】A解析:,所以,故切线方程为.另解:将点代入可排除B、D,而,由反比例函数的图像,再根据图像平移得在点处的切线斜率为正,排除C,从而得A.(4)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴距离d关于时间t的函数图像大致为 A. B. C. D.【答案】C解析:显然,当时,由已知得,故排除A、D,又因为质点是按逆时针方向转动,随时间的变化质点P到轴的距离先减小,再排除B,即得C.另解:根据已知条件得,再结合已知得质点P到轴的距离关于时间的函数为,画图得C.(5)【答案】C解析:易知是真命题,而对:,当时,,又,所以,函数单调递增;同理得当时,函数单调递减,故是假命题.由此可知,真,假,假,真.另解:对的真假可以取特殊值来判断,如取,得;取,得即可得到是假命题,下略.(6)【答案】B解析:根据题意显然有,所以,故.(7)【答案】D解析:根据题意满足条件的.(8)【答案】B解析:当时,,又由于函数是偶函数,所以时,的解集为或,故的解集为或.另解:根据已知条件和幂函数的图像易知的解集为或,故的解集为或.(9)【答案】A解析:由已知得,所以,又属于第二或第四象限,故由解得:,从而.另解:由已知得,所以.(10)【答案】B解析:如图,P为三棱柱底面中心,O为球心,易知,所以球的半径满足:,故.(11)【答案】C解析:不妨设,取特例,如取,则易得,从而,选C.另解:不妨设,则由,再根据图像易得,故选C.(12)【答案】B解析:由已知条件易得直线的斜率为,设双曲线方程为,,则有,两式相减并结合得,,从而,即,又,解得,故选B.第Ⅱ卷二、填空题本大题共4小题,每小题5分。(13)【答案】解析:的几何意义是函数的图像与轴、直线和直线所围成图形的面积,根据几何概型易知.(14)【解析】三棱锥、三棱柱、圆锥等.(15)【答案】解析:设圆的方程为,则根据已知条件得.(16)【答案】解析:设,则,由已知条件有,再由余弦定理分别得到,再由余弦定理得,所以.第=2\*ROMANII卷三,解答题:解答应写出文字说明,正明过程和演算步骤(17)解:(Ⅰ)由已知,当n≥1时,。而所以数列{}的通项公式为。(Ⅱ)由知①从而②①-②得。即(18)解:以为原点,分别为轴,线段的长为单位长,建立空间直角坐标系如图,则(Ⅰ)设则可得因为所以(Ⅱ)由已知条件可得设为平面的法向量则即因此可以取,由,可得所以直线与平面所成角的正弦值为(19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿性别男女需要4030不需要160270估计该地区老年人中,需要志愿者提供帮助的老年人的比例;能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:(19)解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)。由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。(III)由(II)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.(20.)解:(I)由椭圆定义知,又,得的方程为,其中。设,,则A、B两点坐标满足方程组化简的则因为直线AB斜率为1,所以得故所以E的离心率(II)设AB的中点为,由(I)知,。由,得,即得,从而故椭圆E的方程为。(21)(本小题满分12分)设函数。若,求的单调区间;若当时,求的取值范围(21)解:(1)时,,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故 ,从而当,即时,,而,于是当时,. 由可得.从而当时, ,故当时,,而,于是当时,. 综合得的取值范围为.(23)解:(Ⅰ)当EMBEDEquation.DSMT4错误!不能通过编辑域代码创建对象。时,的普通方程为,的普通方程为。联立方程组,解得与的交点为(1,0)。(Ⅱ)的普通方程为。A点坐标为,故当变化时,P点轨迹的参数方程为:P点轨迹的普通方程为EMBEDEquation.DSMT4错误!不能通过编辑域代码创建对象。。故P点轨迹是圆心为,半径为的圆。2011年普通高等学校招生全国统一考试(海南卷)理科数学试卷参考答案一、选择题(1)C(2)B(3)B(4)A(5)B(6)D(7)B(8)D(9)C(10)A(11)A(12)D二、填空题(13)-6(14)(15)(16)三、解答题(17)解:(Ⅰ)设数列{an}的公比为q,由得所以。有条件可知a>0,故。由得,所以。故数列{an}的通项式为an=。(Ⅱ
)故所以数列的前n项和为(18)解:(Ⅰ
)因为,由余弦定理得从而BD2+AD2=AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD.故PABD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,,,。设平面PAB的法向量为n=(x,y,z),则即因此可取n=设平面PBC的法向量为m,则可取m=(0,-1,)故二面角A-PB-C的余弦值为(19)解:(Ⅰ)由实验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由实验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为X的数学期望值EX=2×0.04+2×0.54+4×0.42=2.68(20)解: (Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y),=(0,-3-y),=(x,-2).再由愿意得知(+)•
=0,即(-x,-4-2y)•
(x,-2)=0.所以曲线C的方程式为y=x-2.更多免费试卷下载w绿w色w.lsp圃jy.c中om小学教育网分站(Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。则O点到的距离.又,所以当=0时取等号,所以O点到距离的最小值为2.(21)解:(Ⅰ) 由于直线的斜率为,且过点,故即 解得,。(Ⅱ)由(Ⅰ)知,所以 。考虑函数,则。(i)设,由知,当时,。而,故当时,,可得;当x(1,+)时,h(x)<0,可得h(x)>0从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.(ii)设0<k<1.由于当x(1,)时,(k-1)(x2+1)+2x>0,故h’(x)>0,而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。(iii)设k1.此时h’(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得h(x)<0,与题设矛盾。综合得,k的取值范围为(-,0](23)解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以即从而的参数方程为(为参数)(Ⅱ)曲线的极坐标方程为,曲线的极坐标方程为。射线与的交点的极径为,射线与的交点的极径为。所以.2012年普通高等学校招生全国统一考试理科数学第一卷选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。(1)【解析】选,,,共10个(2)【解析】选甲地由名教师和名学生:种(3)【解析】选,,的共轭复数为,的虚部为(4)【解析】选是底角为的等腰三角形(5)【解析】选,或(6)【解析】选(7)【解析】选该几何体是三棱锥,底面是俯视图,高为此几何体的体积为(8)【解析】选设交的准线于得:(9)【解析】选不合题意排除合题意排除另:,得:(10)【解析】选得:或均有排除(11)【解析】选的外接圆的半径,点到面的距离为球的直径点到面的距离为此棱锥的体积为另:排除(12【解析】选函数与函数互为反函数,图象关于对称函数上的点到直线的距离为设函数由图象关于对称得:最小值为第Ⅱ卷二.填空题:本大题共4小题,每小题5分。(13)【解析】(14)【解析】的取值范围为约束条件对应四边形边际及内的区域:则(15)【解析】使用寿命超过1000小时的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国控制器PLC行业市场深度分析及投资策略研究报告
- 2025年 车工中级职业技能考试试题单选题、判断题附答案
- 中国住宿服务行业发展趋势及投资前景预测报告
- 管制移动式单摇床行业深度研究分析报告(2024-2030版)
- 2025年眼科市场调查报告
- 钢筋保护层塑料垫块项目投资可行性研究分析报告(2024-2030版)
- 2024年全球及中国脑蛋白水解物原料药行业头部企业市场占有率及排名调研报告
- 2025年中国茴香醇行业市场发展前景及发展趋势与投资战略研究报告
- 邀约培训课件
- 红外探测设计报告
- 富士康职工档案管理制度
- 7数沪科版期末考试卷-2024-2025学年七年级(初一)数学下册期末考试模拟卷04
- 胃管置入术考试题及答案
- 2025年全国统一高考英语试卷(全国一卷)含答案
- 郑州大学cad期末考试试题及答案
- 学院就业工作管理制度
- 保利大剧院面试题及答案
- 吉林省吉林市名校2025年七下英语期末考试模拟试题含答案
- 2025年智能科技与数字经济对社会交通出行方式与效率的影响报告
- 2025年机器人技术与应用开发考试试题及答案
- 2025届福建省厦门市名校数学七下期末质量检测试题含解析
评论
0/150
提交评论