2024届山东省聊城阳谷县联考八年级数学第一学期期末统考模拟试题含解析_第1页
2024届山东省聊城阳谷县联考八年级数学第一学期期末统考模拟试题含解析_第2页
2024届山东省聊城阳谷县联考八年级数学第一学期期末统考模拟试题含解析_第3页
2024届山东省聊城阳谷县联考八年级数学第一学期期末统考模拟试题含解析_第4页
2024届山东省聊城阳谷县联考八年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省聊城阳谷县联考八年级数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二元一次方程组的解是()A. B. C. D.2.下面运算结果为的是A. B. C. D.3.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm4.如图,一次函数,的图象与的图象相交于点,则方程组的解是()A. B. C. D.5.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A.1、2、3 B.2、3、4C.3、4、5 D.4、5、66.下列各式中,计算正确的是()A. B. C. D.7.下列分式不是最简分式的是()A. B. C. D.8.下列四个互联网公司logo中,是轴对称图形的是()A. B. C. D.9.尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是()A.SAS B.ASA C.AAS D.SSS10.点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,﹣1)11.下列曲线中不能表示y与x的函数的是()A. B. C. D.12.计算()A.7 B.-5 C.5 D.-7二、填空题(每题4分,共24分)13.当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为________.15.如图,在△ABC和△DEF中,∠B=40°,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S△ABC_____S△DEF.(填“>”或“=”或“<”).16.实数的平方根是____________.17.如图,在平面直角坐标系中,点的坐标为,点为轴上一动点,以为边在的右侧作等腰,,连接,则的最小值是__________.18.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是________.三、解答题(共78分)19.(8分)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.20.(8分)如图,在中,,,点是上一动点,连结,过点作,并且始终保持,连结.(1)求证:;(2)若平分交于,探究线段之间的数量关系,并证明.21.(8分)已知点D为内部(包括边界但非A、B、C)上的一点.(1)若点D在边AC上,如图①,求证:AB+AC>BD+DC(2)若点D在内,如图②,求证:AB+AC>BD+DC(3)若点D在内,连结DA、DB、DC,如图③求证:(AB+BC+AC)<DA+DB+DC<AB+BC+AC22.(10分)已知一次函数的图象经过点,并且与轴相交于点,直线与轴相交于点,点恰与点关于轴对称,求这个一次函数的表达式.23.(10分)如图,在中,,,平分,,求证:24.(10分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.25.(12分)已知y与成正比,当时,.(1)求y与x之间的函数关系式;(2)若点在这个函数图象上,求a的值.26.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:方程组利用加减消元法求出解即可.详解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选B.点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、B【解题分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【题目详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【题目点拨】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.3、B【解题分析】根据“AAS”证明

ΔABD≌ΔEBD

.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【题目详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD(AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10cm.故选B.【题目点拨】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4、A【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【题目详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组的解是,故选A.【题目点拨】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.5、C【分析】若三根木棒首尾顺次连接,能组成直角三角形,则此三角形的三边应符合勾股定理的逆定理,故只需根据勾股定理的逆定理对四个选项进行逐一解答即可.【题目详解】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、42+52≠62,不能组成直角三角形,故此选项错误;故选C.【题目点拨】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.熟记定理是解题的关键.6、C【解题分析】根据平方根、立方根的运算及性质逐个判断即可.【题目详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误,故答案为:C.【题目点拨】本题考查了平方根、立方根的运算及性质,解题的关键是熟记运算性质.7、B【分析】根据最简分式的概念即可得出答案.【题目详解】解:A、无法再化简,所以是最简分式,故A选项错误;B、,所以不是最简分式,故B选项正确;C、无法再化简,所以是最简分式,故C选项错误;D、无法再化简,所以是最简分式,故D选项错误故答案为:B.【题目点拨】本题考查最简分式的概念,熟记最简分式的概念是解题的关键.8、D【分析】根据轴对称图形的概念判断即可.【题目详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【题目点拨】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、D【解题分析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.10、C【解题分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【题目详解】点(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选C.【题目点拨】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11、C【解题分析】函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.【题目详解】当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.【题目点拨】函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。12、C【分析】利用最简二次根式的运算即可得.【题目详解】故答案为C【题目点拨】本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.二、填空题(每题4分,共24分)13、3【分析】先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.【题目详解】因为当时,分式无意义,所以,解得:,因为当时,分式的值为零,所以,解得:,所以故答案为:3.【题目点拨】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.14、(1,2)【解题分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答点A(-1,0)向右跳2个单位长度,-1+2=1,向上2个单位,0+2=2,所以点A′的坐标为(1,2).15、=【分析】分别表示出两个三角形的面积,根据面积得结论.【题目详解】接:过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140°,∴∠DEH=40°.∴DH=sin∠DEH×DE=8×sin40°,∴S△DEF=EF×DH=20×sin40°过点A作AG⊥BC,垂足为G.∵AG=sin∠B×AB=5×sin40°,∴S△ABC=BC×AG=20×sin40°∴∴S△DEF=S△ABC故答案为:=【题目点拨】本题考查了锐角三角函数和三角形的面积求法.解决本题的关键是能够用正弦函数表示出三角形的高.16、【分析】直接利用平方根的定义计算即可.【题目详解】∵±的平方是,∴的平方根是±.故答案为±.【题目点拨】本题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.17、3.【分析】如图,作DH⊥x于H,利用全等三角形的判定与性质证明点D在直线y=x-3上运动,O关于直线y=x-3的对称点E′,连接AE′,求出AE′的长即可解决问题.【题目详解】如图,作DH⊥x轴于H.∵∠AOB=∠ABD=∠BHD=90°,∴∠ABO+∠BAO=90°,∠ABO+∠DBH=90°,∴∠BAO=∠DBH,∵AB=DB,∴△ABO≌△BDH(AAS),∴OA=BH=3,OB=DH,∴HD=OH-3,∴点D在直线y=x-3上运动,作O关于直线y=x-3的对称点E′,连接AE′交直线y=x-3于D′,连接OD′,则OD′=D′E′根据“两点之间,线段最短”可知此时OD+AD最小,最小值为AE′,∵O(0,0),O关于直线y=x-3的对称点为E′,∴E′(3,-3),∵A(0,3),∴AE′=3,∴OD+AD的最小值是3,故答案为:3.【题目点拨】本题考查全等三角形的判定和性质,等腰直角三角形的判性质,利用轴对称解决最短路径问题,一次函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.18、3【解题分析】如图,过点D作DF⊥AB于点F,∵DE⊥AC于点E,∴S△ADC=ACDE=6,即:DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.三、解答题(共78分)19、(1)BC=米;(2)12米.【分析】(1)用勾股定理可求出BC的长;(2)设BD=x米,则BD=(21-x)米,分别在中和中表示出,于是可列方程,解方程求出x,然后可求AD的长.【题目详解】解:(1)∵AB⊥AC∴BC=(米);(2)设BD=x米,则BD=(21-x)米,在中,在中,,∴,∴x=5,∴(米).【题目点拨】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.20、(1)见解析;(2),见解析【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;

(2)结论:.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题.【题目详解】(1)∵,∴,又∵,∴,在△ABD和△ACE中,,∴△ABD≌△ACE;(2),理由如下:连接FE,∵,∴,由(1)知△ABD≌△ACE,∴,,∴,∴,∴,∵AF平分,∴,在△DAF和△EAF中,,∴△DAF≌△EAF,∴.∴.【题目点拨】本题是三角形综合题,主要考查了等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据三角形的三边关系和不等式的基本性质即可得出结论;(2)延长BD交AC于E,根据三角形的三边关系和不等式的基本性质即可得出结论;(3)根据三角形的三边关系和不等式的基本性质即可得出结论.【题目详解】解:(1)∵AB+AD>BD∴AB+AD+DC>BD+DC∴AB+AC>BD+DC(2)延长BD交AC于E∵AB+AE>BD+DE①DE+EC>DC②∴由①+②,得AB+AE+DE+EC>BD+DE+DC整理,得AB+AC>BD+DC(3)∵AD+BD>AB①BD+DC>BC②AD+DC>AC③∴把①+②+③得AD+BD+BD+DC+AD+DC>AB+BC+AC整理,得AD+DB+DC>(AB+BC+AC)又∵由上面(2)式得到:DB+DA<AC+BC①DB+DC<AB+AC②DA+DC<AB+BC③∴把①+②+③得DB+DA+DB+DC+DA+DC<AC+BC+AB+AC+AB+BC整理得DA+DB+DC<AB+BC+AC∴(AB+BC+AC)<DA+DB+DC<AB+BC+AC【题目点拨】此题考查的是比较线段的和之间的大小关系,掌握三角形的三边关系和不等式的基本性质是解决此题的关键.22、y=-4x-1.【分析】先求出点Q的坐标,继而根据关于x轴对称的点的坐标特征求出点P的坐标,然后将(-2,5),点P坐标代入解析式利用待定系数法进行求解即可.【题目详解】∵直线与轴相交于点,当x=0时,y=-x+1=1,∴Q(0,1),∵点恰与点关于轴对称,∴P(0,-1),将(-2,5)、(0,-1)分别代入y=kx+b,得,解得:,所以一次函数解析式为:y=-4x-1.【题目点拨】本题考查了待定系数法求一次函数解析式,求出点P的坐标是解题的关键.23、详见解析【分析】根据题意分别延长CE、BA,并交于F点,由BE平分∠ABC,CE⊥BE,得到△BCF为等腰三角形,FC=2EC;易证得Rt△ABD≌Rt△ACF,则根据全等三角形的性质,BD=CF,进而分析即可得到结论.【题目详解】解:证明:分别延长,并交于点,如图:平分,为等腰三角形,三线合一可知E为FC的中点即,,,而,,,∵,∴.【题目点拨】本题考查等腰三角形的判定与性质以及三角形全等的判定与性质,熟练掌握等腰三角形三线合一的性质即等腰三角形底边上的高,中线和顶角的角平分线三线合一.24、(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论