版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲质数与合数什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘以它本身的形式,所以不考虑1作为乘数的情况:,,……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数.而像2,3,7……这些不能拆成若干个不为1的数相乘形式的数,我们称之为质数.如果说得形象一点,质数就是“拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.注意,1既不是质数也不是合数.我们先来看一个关于质数的小问题,提高大家对质数的熟悉程度:请写出所有颠倒个位十位之后还是质数的两位质数._____________________________________________(填写在横线上)相信对100以内的质数比较熟悉的同学,做这个题目会很轻松.质数是我们后面学习的基础,因此同学们一定要牢牢记住常见的质数.请同学们在下面的横线上写出100以内的所有质数:同学们还可以这样做:从大到小写出100以内的质数.如果你能一个不少地写出来,说明你对100以内的质数确实掌握得很牢固了^_^.当然,同学们写出的这些质数只是质数大军中的冰山一角.在100以上还有无穷多个质数,比如接着100的就有四个质数:101,103,107,109.下面是主试委员会为第六届下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.
将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.例题1【分析】1~56以内的质数有哪些?把它们列出来,然后依次找出对应的汉字,这句话就出来了.
练练习1自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?((1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出.
(2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出.
(3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.例题2【分析】对于第1问,依次枚举即可,可知这两个不同的质数一定都是奇数.那么后两问中的质数可以都是奇数吗?
练练习2如果三个互不相同的质数相加,和为52,这三个质数可能是多少?
通过前面的学习,我们对质数已经有了基本了解.下面我们来学习这一讲中最重要的内容:分解质因数.分解质因数是指把一个数写成质因数相乘的形式.如:,,.同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.分解质因数的方法一般是短除法,如下图所示,我们将30分解质因数,在计算的过程中要善用各种特殊数的整除特性.22303155能整除30的质数相除后得到的商100在分解质因数时也可以写成:;280在分解质因数时也可以写成.这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作指数,如:指数指数指数这里280的分解式中5和7的指数都是1,写的时候可以省略.如何确定一个大数是不是质数呢?我们要判断197是不是质数,难道需要一一验算197以内的所有质数吗?同学们不用担心,数学家们早就为我们准备了简单的方法,只需要试很少的几个就能判断.例如我们要判断197是否为质数,只需要验算15以内的质数就足够了!因为比197大.类似的,如果我们要判断2011是不是质数,只需要验算45以内的质数,因为比2011大.有了这个方法,同学们以后判断一个大数是不是质数就非常方便了.请把下面的数分解质因数:请把下面的数分解质因数:
(1)360;(2)539;(3)999;(4)10101.例题3「分析」将一个数分解质因数,可以从最小的质数开始,一个一个去试商,写成短除的形式.练练习3请把下面的数分解质因数:(1)373;(2)12660.在整数问题中,有一类特殊的问题,专求乘积末尾连续0的个数.解决这类问题的方法同样是质因数分解.下面我们来看一个例题.算式算式计算结果的末尾有多少个连续的0?例题4【分析】乘积的末尾要出现一个0,只需要乘数中凑出一个10,那么能凑出来几个10,末尾就有多少个连续的0.注意到,我们只需要计算这个算式中含有的质因数2和5的个数就可以了.
练练习4算式的计算结果的末尾有多少个连续的0?
分解质因数是学习数论问题时非常重要的方法,大家一定要能熟练的将一个数分解质因数,这应该作为一项基本的能力来培养.下面我们来看看如何利用分解质因数来解决实际的问题.
三个连续自然数的乘积等于三个连续自然数的乘积等于39270,那么这三个数的和等于多少?例题5「分析」39270是三个自然数的乘积,于是先将39270分解质因数,再对这些质因数进行适当的组合,凑出题目中的三个连续自然数.由于连续自然数相互之间比较接近,所以凑的时候也必须尽量接近.
360360与一个三位数的乘积是完全平方数,这个三位数最小是多少?例题6【分析】完全平方数是两个相同数的乘积,那么分解后它的每个质因数的次数都是偶数.而,它不是一个平方数.它最小再乘上多少,结果就是平方数了?
通过上面例题的讲解,相信大家能体会到分解质因数的好处.它就像手术刀一样,把整数解剖开来,让我们把整数的组成结构看得一清二楚.很多看似复杂的问题,如果从分解质因数的角度来看,就会变得非常简单.
质数有无穷个吗?质数有无穷个吗?在正整数里走得越远,我们就发现质数变得越来越稀少.有人可能会问:质数出现频率越来越小,它们会不会在某处终止呢?会不会从某个数开始之后就没有质数了呢?早在公元前300年左右,欧几里得就第一次证明了质数有无穷多个.他用的是如下的反证法:设n代表最后一个质数,那么从2到n的所有质数的积是.将这个积加1称为k,因为2,3,5,7,11,…,n都不能整除k,所以k必然含有一个更大的质因数!这与n代表最后一个质数相矛盾!课堂内外
作业(1)如果两个不同的质数相加等于39,那么这两个质数的乘积是多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购物广场建设项目可行性综合评估报告
- 电工协议书15篇
- 高速收费员的述职报告模板
- 医疗健康管理协议
- 不动产赠与合同(2024年版)
- 2023年北京市昌平区城北街道城市协管员(综合治安岗)招录笔试真题
- 2023年南开大学学生工作辅导员岗位招聘笔试真题
- 2024年黏膜制剂材料项目建议书
- 质押车 合同范本
- 杂木收购合同范本
- DJI 产品交付理论试题
- 第十三章医疗服务管理课件
- 工程质保期满验收报告模板
- 《中国当代文艺思潮》导论文艺思潮的基本概念
- 高考地理复习:过程类推理综合题解析-以地貌景观题为例
- 2023年南方出版传媒股份有限公司招聘笔试模拟试题及答案解析
- 初中语文阅读专题教学课件
- 危险化学品安全经营单位主要负责人和安全管理人员培课件
- 教育调查研究课件
- 胶质瘤的综合治疗课件
- 孟子三章课件
评论
0/150
提交评论