2024届贵州遵义市达兴中学八上数学期末调研试题含解析_第1页
2024届贵州遵义市达兴中学八上数学期末调研试题含解析_第2页
2024届贵州遵义市达兴中学八上数学期末调研试题含解析_第3页
2024届贵州遵义市达兴中学八上数学期末调研试题含解析_第4页
2024届贵州遵义市达兴中学八上数学期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州遵义市达兴中学八上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知是整数,当取最小值时,的值是()A.5 B.6 C.7 D.82.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种10千克、乙种9千克、丙种3千克混在一起出售,为确保不亏本,售价至少应定为每千克()A.6元 B.6.5元 C.6.7元 D.7元3.已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A1B1,如果A1(a,1),B1(5,b),那么ab的值是()A.32 B.16 C.5 D.44.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有(

)个

.A.1 B.2 C.3 D.45.如图,在平行四边形ABCD中,∠ODA=90°,AC=10,BD=6,则AD的长为()A.4 B.5 C.6 D.86.如图,中,,,DE是AC边的垂直平分线,则的度数为()A. B. C. D.7.如图,和都是等腰直角三角形,,,的顶点在的斜边上,若,则两个三角形重叠部分的面积为()A.6 B.9 C.12 D.148.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50° B.60° C.70° D.80°9.某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6 B.6.18×10﹣7 C.6.18×106 D.6.18×10﹣610.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.11.已知点都在直线y=-3x+m上,则的大小关系是()A. B. C. D.12.下列计算正确的是()A.a2•a3=a5 B.(2a)2=4a C.(ab)3=ab3 D.(a2)3=a5二、填空题(每题4分,共24分)13.如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为_____.14.已知a+b=2,则a2﹣b2+4b的值为____.15.已知是关于的二元一次方程的一个解,则的值为_____.16.3.145精确到百分位的近似数是____.17.下列各式:①;②;③;④.其中计算正确的有__________(填序号即可).18.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.三、解答题(共78分)19.(8分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点,动点M从A点以每秒1个单位的速度沿x轴向左移动.求A、B两点的坐标;求的面积S与M的移动时间t之间的函数关系式;当t为何值时≌,并求此时M点的坐标.20.(8分)某数学兴趣小组开展了一次活动,过程如下:设.现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线、上.活动一、如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:(填“能”或“不能”)(2)设,求的度数;活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中为第一根小棒,且.数学思考:(3)若已经摆放了3根小棒,则,,;(用含的式子表示)(4)若只能摆放5根小棒,则的取值范围是.21.(8分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____,小明在停留之前的速度为____;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.22.(10分)如图,已知正比例函数和一个反比例函数的图像交于点,.(1)求这个反比例函数的解析式;(2)若点B在x轴上,且△AOB是直角三角形,求点B的坐标.23.(10分)如图,直线相交于点,分别是直线上一点,且,,点分别是的中点.求证:.24.(10分)如图,已知中,,.(1)根据要求用尺规作图,不写作法,但要保留作图痕迹:作边的垂直平分线,交于点,交于点,连接;(2)写出图中一对全等的三角形,和一个等腰三角形.25.(12分)如图所示,四边形是正方形,是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.(1)求证:;(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.26.阅读与思考x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p)(x+q)=x2+(p+q)x+pq,因式分解是整式乘法相反方向的变形,利用这种关系可得x2+(p+q)x+pq=(x+p)(x+q).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x2﹣x﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x2+(p+q)x+pq型的式子.所以x2﹣x﹣6=(x+2)(x﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x2﹣x﹣6=(x+2)(x﹣3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y2﹣2y﹣1.(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,请直接写出整数m的所有可能值.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据绝对值的意义,找到与最接近的整数,可得结论.【题目详解】解:∵,∴,且与最接近的整数是5,∴当取最小值时,的值是5,故选A.【题目点拨】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.2、C【分析】求出甲乙丙三种糖果的加权平均数,即可求解.【题目详解】,答:为确保不亏本,售价至少应定为每千克6.7元.故选C.【题目点拨】本题主要考查加权平均数,掌握加权平均数的公式,是解题的关键.3、B【分析】利用平移的规律求出a,b即可解决问题.【题目详解】解:∵A(1,﹣3),B(2,﹣2)平移后为A1(a,1),B1(5,b),∴平移方式为向右平移3个单位长度,向上平移4个单位长度,∴a=4,b=2,∴ab=42=16,故选:B.【题目点拨】本题主要考查平移变换和有理数的乘方运算,解题的关键是根据点的平移求出a,b的值.4、C【解题分析】①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∴③正确;④因为BD是△ABC的角平分线,且BA>BC,所以D不可能是AC的中点,则AC≠2CD,故④错误.故选:C.【题目点拨】此题考查角平分线定理,全等三角形的判定与性质、等腰三角形的性质与判定、三角形内角和定理、三角形的面积关系等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.5、A【分析】根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.【题目详解】解:∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=AC=5,OB=OD=BD=3,∵∠ODA=90°,∴在Rt△ADO中,由勾股定理可知,,故选:A.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.6、A【分析】由等腰三角形性质,得到,由DE垂直平分AC,得到AE=CE,则,然后求出.【题目详解】解:∵在中,,,∴,∵DE是AC边的垂直平分线,∴AE=CE,∴,∴;故选择:A.【题目点拨】本题考查了等腰三角形的性质,垂直平分线性质定理,以及三角形内角和定理,解题的关键是掌握所学性质,正确求出.7、C【分析】先根据已知条件,证明图中空白的三个小三角形相似,即,根据,求出AF的值,再求出BF的值,由于△ACF与△ABC同高,故面积之比等于边长之比,最后根据AF与BF的关系,得出△ACF与△ABC的面积之比,由于△ABC的面积可求,故可得出阴影部分的面积.【题目详解】根据题意,补全图形如下:图中由于和都是等腰直角三角形,故可得出如下关系:,由此可得,继而得到,令,则,根据勾股定理,得出:那么,解出,由于△ACF与△ABC同高,故面积之比等于边长之比,则故阴影部分的面积为12.【题目点拨】本题关键在于先证明三个三角形相似,得出对应边的关系,最后根据已知条件算出边长,得出阴影部分面积与已知三角形面积之比,故可得出阴影部分的面积.8、A【解题分析】试题解析:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选A.9、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,n的值由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.00000118=1.18×10﹣1.故选D.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【题目详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【题目点拨】考核知识点:轴对称图形识别.11、A【分析】根据在y=-3x+m中,-3<0,则y随x的增大而减小,然后根据一次函数的增减性解答即可.【题目详解】∵直线中,∴y随x的增大而减小,又∵点都在直线上,且.∴y1>y2>y3故答案为A.【题目点拨】本题考查了一次函数的增减性,灵活运用一次函数的性质是正确解答本题的关键.12、A【分析】根据同底数幂的乘法、积的乘方和幂的乘方逐一判断即可.【题目详解】A.a2•a3=a2+3=a5,故正确;B.(2a)2=4a2,故错误;C.(ab)3=a3b3,故错误;D.(a2)3=a6,故错误.故选A.【题目点拨】此题考查的是幂的运算性质,掌握同底数幂的乘法、积的乘方和幂的乘方是解决此题的关键.二、填空题(每题4分,共24分)13、70°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】∵△ABC≌△DCB,∠DBC=35°,∴∠ACB=∠DBC=35°,∴∠AOB=∠ACB+∠DBC=35°+35°=70°.故答案为70°.【题目点拨】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.14、4【解题分析】试题分析:因为,所以.考点:1.因式分解;2.求代数式的值.15、1【分析】根据方程解的定义把代入关于x,y的二元一次方程,通过变形即可求解.【题目详解】解:把代入关于x,y的二元一次方程,得,移项,得m﹣n=1.故答案为:1.【题目点拨】本题考查了方程的解的定义,一组数是方程的解,那么它一定满足这个方程,代入方程,可求得m﹣n的值.16、3.1.【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【题目详解】解:3.145≈3.1(精确到百分位).

故答案为3.1.【题目点拨】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.17、①②③【分析】根据负整式指数幂、积的乘方、多项式乘以多项式、完全平方公式,分别进行计算,即可得到答案.【题目详解】解:①,正确;②,正确;③,正确;④,故④错误;∴计算正确的有:①②③;故答案为:①②③.【题目点拨】本题考查了整式的混合运算,负整数指数幂的运算法则,解题的关键是熟练掌握整式乘法的运算法则进行计算.18、【解题分析】根据题意作E关于AD的对称点M,连接CM交AD于P,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CP+EP=CM,根据垂线段最短得出CP+EP≥,即可得出答案.【题目详解】作E关于AD的对称点M,连接CM交AD于P,连接EP,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,∴S△ABC=×BC×AD=×AB×CN,∴CN==,∵E关于AD的对称点M,∴EP=PM,∴CP+EP=CP+PM=CM,根据垂线段最短得出:CM≥CN,即CP+EP≥,即CP+EP的最小值是,故答案为.【题目点拨】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性.三、解答题(共78分)19、(1)A(0,4),B(0,2);(2);(3)当t=2或1时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【题目详解】(1)∵y=﹣x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;∴的面积S与M的移动时间t之间的函数关系式为:(3)∵OC=OA,∠AOB=∠COM=90°,∴只需OB=OM,则△COM≌△AOB,即OM=2,此时,若M在x轴的正半轴时,t=2,M在x轴的负半轴,则t=1.故当t=2或1时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【题目点拨】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.20、(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由,得∠AA2A1=∠A2AA1=θ,从而得∠AA2A1+∠A2AA1=2θ,同理得∠A2AA1+=θ+2θ=3θ,∠A2AA1+θ+3θ=4θ;(4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【题目详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A1A2=A2A3,A1A2⊥A2A3,∴∠A2A1A3=45°,∴∠AA2A1+θ=45°,∵AA1=A1A2∴∠AA2A1=∠BAC=θ,∴θ=22.5°;(3)∵,∴∠AA2A1=∠A2AA1=θ,∴∠AA2A1+∠A2AA1=2θ,∵,∴=2θ,∴∠A2AA1+=θ+2θ=3θ,∵,∴3θ,∴∠A2AA1+θ+3θ=4θ,故答案是:2θ,3θ,4θ;(4)由第(3)题可得:5θ,6θ,∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【题目点拨】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.21、(1)2,10;(2)s=15t-40;(3)t=3h或t=6h.【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;小明2小时内行驶的路程是20km,据此可以求出他的速度;

(2)由图象可知:B(4,20),C(5,35),设线段的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;

(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当时,10t=10(t-1);当时,20=10(t-1);当时,15t-40=10(t-1);逐一求解即可.【题目详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;由图象可知:小明2小时内行驶的路程是20km,所以他的速度是(km/h);故答案是:2;10.

(2)设线段的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴,∴,∴线段的函数表达式为s=15t-40;

(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50km,∴小华的速度=(km/h),下面分三种情况讨论两人在途中相遇问题:当时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当时,两人在途中相遇,则20=10(t-1),解得t=3;当时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h或t=6h时,两人在途中相遇.【题目点拨】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.22、(1);(2)点B的坐标为(2,0)或【分析】(1)先由点A在正比例函数图象上求出点A的坐标,再利用待定系数法解答即可;(2)由题意可设点B坐标为(x,0),然后分∠ABO=90°与∠OAB=90°两种情况,分别利用平行于y轴的点的坐标特点和勾股定理建立方程解答即可.【题目详解】解:(1)∵正比例函数的图像过点(2,m),∴m=1,点A(2,1),设反比例函数解析式为,∵反比例函数图象都过点A(2,1),∴,解得:k=2,∴反比例函数解析式为;(2)∵点B在x轴上,∴设点B坐标为(x,0),若∠ABO=90°,则B(2,0);若∠OAB=90°,如图,过点A作AD⊥x轴于点D,则,∴,解得:,∴B;综上,点B的坐标为(2,0)或.【题目点拨】本题是正比例函数与反比例函数综合题,主要考查了待定系数法求函数的解析式、函数图象上点的坐标特点以及勾股定理等知识,属于常考题型,熟练掌握正比例函数与反比例函数的基本知识是解题的关键.23、证明见解析.【分析】根据直角三角形的性质得到DM=BM,根据等腰三角形的三线合一证明结论.【题目详解】解:证明:∵BC⊥a,DE⊥b∴△EBC和△EDC都是直角三角形∵M为CE中点,∴DM=EC,BM=EC∴DM=BM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论