版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西蒙山县2024届八上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.-8的立方根是()A.±2 B.-2 C.±4 D.-42.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BAD B.BD=CD C.AE=ED D.DE=DB3.下列各式中,分式的个数为(),,,,,,A.2个 B.3个 C.4个 D.5个4.若函数是正比例函数,则的值为()A.1 B.0 C. D.5.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.下列代数式中,属于分式的是()A.5x B. C. D.7.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5° B.8° C.10° D.15°8.若x<2,化简+|3-x|的正确结果是()A.-1 B.1 C.2x-5 D.5-2x9.下面的计算中,正确的是()A. B. C. D.10.如图,在等边△ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM以下说法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.若,则y-x=_________12.若a-b=3,ab=1,则a2+b2=______.13.计算______________14.如图点C,D在AB同侧,AD=BC,添加一个条件____________就能使△ABD≌△BAC.15.已知点A(x,2),B(﹣3,y),若A,B关于x轴对称,则x+y等于_____.16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(﹣2,﹣3),棋子B的坐标为(1,﹣2),那么棋子C的坐标是_____.17.若点A(1-x,5),B(3,y)关于y轴对称,则x+y=________.18.如图,将等边沿翻折得,,点为直线上的一个动点,连接,将线段绕点顺时针旋转的角度后得到对应的线段(即),交于点,则下列结论:①;②;③当为线段的中点时,则;④四边形的面积为;⑤连接、,当的长度最小时,则的面积为.则说法正确的有________(只填写序号)三、解答题(共66分)19.(10分)先化简,再求值:(1﹣)÷,其中a=(3﹣π)0+()﹣1.20.(6分)阅读下面材料:数学课上,老师给出了如下问题:如图,AD为△ABC中线,点E在AC上,BE交AD于点F,AE=EF.求证:AC=BF.经过讨论,同学们得到以下两种思路:思路一如图①,添加辅助线后依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.思路二如图②,添加辅助线后并利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.完成下面问题:(1)①思路一的辅助线的作法是:;②思路二的辅助线的作法是:.(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).21.(6分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.22.(8分)化简求值:(1)已知,求的值.(2)已知,求代数式的值.23.(8分)如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).24.(8分)如图,在中,,,为的中点,、分别是、(或它们的延长线)上的动点,且.(1)当时,如图①,线段和线段的关系是:_________________;(2)当与不垂直时,如图②,(1)的结论还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)当、运动到、的延长线时,如图③,请直接写出、、之间的关系.25.(10分)(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.26.(10分)(阅读理解)利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:(问题解决)根据以上材料,解答下列问题:(1)用多项式的配方法将多项式化成的形式;(2)用多项式的配方法及平方差公式对多项式进行分解因式;(3)求证:不论,取任何实数,多项式的值总为正数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据立方根的定义进行解答即可.【题目详解】∵,∴-8的立方根是-1.故选B.【题目点拨】本题考查了立方根,熟练掌握概念是解题的关键.2、D【解题分析】根据等腰三角形的性质,平行线的性质解答即可.【题目详解】∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,A正确,不符合题意;BD=CD,B正确,不符合题意;∵DE∥AB,∴∠EDA=∠BAD.∵∠EAD=∠BAD,∴∠EAD=∠EDA,∴AE=ED,C正确,不符合题意;DE与DB的关系不确定,D错误,符合题意.故选D.【题目点拨】本题考查了等腰三角形的判定与性质,平行线的性质,掌握等腰三角形的判定与性质是解题的关键.3、B【分析】根据如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【题目详解】、、分母中含字母,因此是分式;一共有3个;故选B.【题目点拨】本题考查分式的定义,解题关键是熟练掌握分式的定义.4、A【分析】先根据正比例函数的定义列出关于k的方程组,求出k的值即可.【题目详解】∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得:k=1.故选A.【题目点拨】本题考查的是正比例函数的定义,即形如y=kx(k≠0)的函数叫正比例函数.5、B【分析】根据线段垂直平分线的性质得AE=BE,然后利用等量代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【题目详解】解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=1.
故选B.【题目点拨】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.6、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【题目详解】根据分式的定义
A.是整式,答案错误;
B.是整式,答案错误;
C.是分式,答案正确;
D.是根式,答案错误;
故选C.【题目点拨】本题考查了分式的定义,在解题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.7、C【解题分析】依据直角三角形,即可得到∠BCE=40°,再根据∠A=30°,CD平分∠ACB,即可得到∠BCD的度数,再根据∠DCE=∠BCD﹣∠BCE进行计算即可.【题目详解】∵∠B=50°,CE⊥AB,∴∠BCE=40°,又∵∠A=30°,CD平分∠ACB,∴∠BCD=∠BCA=×(180°﹣50°﹣30°)=50°,∴∠DCE=∠BCD﹣∠BCE=50°﹣40°=10°,故选C.【题目点拨】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.8、D【解题分析】分析:本题利用绝对值的化简和二次根式的化简得出即可.解析:∵x<2,∴+|3﹣x|=.故选D.9、B【分析】直接利用积的乘方运算法则、幂的乘方法则以及同底数幂的乘法运算法则分别计算得出答案.【题目详解】解:A、b4•b4=b8,故此选项错误;
B、x3•x3=x6,正确;
C、(a4)3•a2=a14,故此选项错误;
D、(ab3)2=a2b6,故此选项错误;
故选:B.【题目点拨】此题主要考查了积的乘方运算、幂的乘方和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.10、D【解题分析】由△ABD≌△ACE,△AEC≌△AMC,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形,可对④进行判断.【题目详解】∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠EAC,∵△AEC沿AC翻折得到△AMC,∴△AEC≌△AMC,∴AE=AM,∠ECA=∠MCA,∴AD=AM,∠MCA=60°,故①②正确,∵△AEC沿AC翻折得到△AMC,∴AE=AM,EC=CM,∴点A、C在EM的垂直平分线上,∴AC垂直平分EM,∴∠ENC=90°,∵∠MCA=60°,∴∠NMC=30°,∴CM=2CN,故③正确,∵∠BAD=∠EAC,∠ECA=∠MCA,∴∠BAD=∠MCA,∵∠BAD+∠DAC=60°,∴∠DAC+∠CAM=60°,即∠DAM=60°,又AD=AM,∴△ADM是等边三角形,∴MA=DM,故④正确,综上所述,这四句话都正确,故选D.【题目点拨】此题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定与性质、轴对称的性质等知识.二、填空题(每小题3分,共24分)11、8【解题分析】∵,∴=0,=0,∴x+2=0,x+y-4=0,∴x=-2,y=6,∴y-x=6-(-2)=8.故答案是:8.12、1.【解题分析】根据题意,把a-b=3两边同时平方可得,a2-2ab+b2=9,结合题意,将a2+b2看成整体,求解即可.【题目详解】∵a-b=3,ab=1,∴(a-b)2=a2-2ab+b2=9,∴a2+b2=9+2ab=9+2=1.故答案为1.【题目点拨】本题考查对完全平方公式的变形应用能力.13、【分析】先用幂的运算公式计算乘法,再合并同类项,即可得出答案.【题目详解】原式=,故答案为:.【题目点拨】本题考查的是整式的混合运算,需要熟练掌握整式混合运算的运算法则.14、BD=AC或∠BAD=∠ABC【分析】根据全等三角形的判定,满足SAS,SSS即可.【题目详解】解:∵AD=BC,AB=AB,∴只需添加BD=AC或∠BAD=∠ABC,可以利用SSS或SAS证明△ABD≌△BAC;故答案为BD=AC或∠BAD=∠ABC.【题目点拨】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.15、﹣1.【解题分析】让横坐标不变,纵坐标互为相反数列式求得x,y的值,代入所给代数式求值即可.【题目详解】∵A,B关于x轴对称,∴x=﹣3,y=﹣2,∴x+y=﹣1.故答案为:﹣1.【题目点拨】本题考查了关于x轴对称的点的特点及代数式求值问题;用到的知识点为:两点关于x轴对称,纵坐标互为相反数,横坐标不变.16、(2,1)【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【题目详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【题目点拨】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.17、1【题目详解】解:∵点A(1-x,5)与B(3,y)关于y轴对称∴x=4,y=5∴x+y=4+5=1.故答案为:1【题目点拨】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、①②【分析】由等边三角形的性质和折叠的性质,得到四边形ABCD是菱形,则可以判断①、②;当点E时AD中点时,可得△CPF是直角三角形,CE=CF=3,得到,可以判断③;求出对角线的长度,然后求出菱形的面积,可以判断④;当点E与点A重合时,DF的长度最小,此时四边形ACFD是菱形,求出对角线EF和CD的长度,求出面积,可以判断⑤;即可得到答案.【题目详解】解:根据题意,将等边沿翻折得,如图:∴,∠BCD=120°,∴四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO;故①、②正确;∴,∴,∴,∴菱形ABCD的面积=,故④错误;当点E时AD中点时,CE⊥AD,∴DE=,∠DCE=30°,∴,∵,∠PCF=120°,∠F=30°,∴,故③错误;当点E与点A重合时,DF的长度最小,如图:∵AD∥CF,AD=AC=CF,∴四边形ACFD是菱形,∴CD⊥EF,CD=,,∴;故⑤错误;∴说法正确的有:①②;故答案为:①②.【题目点拨】本题是四边形综合题目,考查了旋转的性质,菱形的性质、等边三角形的性质,勾股定理、菱形的面积,三角形面积公式等知识;本题综合性强,熟练掌握菱形的性质和等边三角形的性质是解决问题的关键.三、解答题(共66分)19、【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【题目详解】解:原式=当a=1+4=5时,原式=.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练掌握分式运算法则.20、(1)①延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G;(2)详见解析【分析】(1)①依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.②作BG=BF交AD的延长线于点G.利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.(2)作BG∥AC交AD的延长线于G,证明△ADC≌△GDB(AAS),得出AC=BG,证出∠G=∠BFG,得出BG=BF,即可得出结论.【题目详解】解:(1)①延长AD至点G,使DG=AD,连接BG,如图①,理由如下:∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.故答案为:延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G,如图②.理由如下:∵BG=BF,∴∠G=∠BFG,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFG,∴∠G=∠EAF,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∴AC=BF;故答案为:作BG=BF交AD的延长线于点G;(2)作BG∥AC交AD的延长线于G,如图③所示:则∠G=∠CAD,∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠EFA,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.【题目点拨】本题主要考查全等三角形的判定和性质、等腰三角形的性质、其中一般证明两个三角形全等共有四个定理:AAS、ASA、SAS、SSS,需要同学们灵活运用,解题的关键是学会做辅助线解决问题.21、证明见解析.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【题目详解】∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.考点:全等三角形的判定与性质.22、(1)3;(2)-11【分析】(1)根据整式乘法先化简,再代入已知值计算;(2)根据整式乘法先化简,把变形可得,再代入已知值计算.【题目详解】(1)===2x+1当原式=2+1=3(2)==因为所以,所以原式=-6-5=-11【题目点拨】考核知识点:整式化简求值.掌握整式的运算法则,特别乘法公式是关键.23、(1)∠ACB=2∠ABC;(2)答案见解析【分析】(1)根据已知条件并通过观察、比较、测量、证明等方法即可猜想出结论;(2)根据全等三角形的性质和等腰三角形的性质及三角形的外角即可得到结论.【题目详解】解:(1)∠ACB=2∠ABC(2)想法1:∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵AF=AC+CF,且CD=CF,∴AF=AC+CD,又∵AB=AC+CD,∴AB=AF,又∵AD=AD,∴△ABD≌△AFD,∴∠B=∠F,∵CD=CF,∴∠F=∠CDF,又∵∠ACB=∠F+∠CDF,∴∠ACB=2∠F,∴∠ACB=2∠B.想法2:∵AD是∠BAC的平分线,∴∠BAD=∠CAD,又∵AC=AE,AD=AD,∴△AED≌△ACD,∴ED=CD,∠C=∠AED,又∵AB=AC+CD,AB=AE+BE,AE=AC,∴CD=BE,∴DE=BE,∴∠B=∠EDB,又∵∠AED=∠B+∠EDB,∴∠AED=2∠B,又∵∠C=∠AED,∴∠C=2∠B.【题目点拨】本题主要考查全等三角形和等腰三角形的性质.根据题意利用辅助线构造全等是解题的关键.24、(1),;(2)成立,证明见解析;(3)【解题分析】(1)连接CO,证明△AOM≌△CON可证得OM=ON,∠CON=∠AOM=45°,再证明∠COM=45°即可证明出结论;(2)连接CO,证明可证得OM=ON,再证明即可得到结论;(3)同(2)得:△OCF≌△OBN,,得出S△OMN=S五边形OBNMC=S△CMN+S△OCB=S△CMN+S△ABC.【题目详解】(1)∵,,∴∠A=45°,∵,∴∠AOM=45°,连接CO,则有CO⊥AB,如图,∴∠COM=45°,∠BCO=45°,CO=AB∵为的中点,∴∴AO=CO在△AOM和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光伏买卖合同范本
- 广州公积金 租赁合同
- 韩国租房合同模板
- 合同到期自我评价个人总结简短
- 2024市旧机动车买卖合同
- 智慧交警建设方案
- 全国造价工程师注册管理系统详解
- 2024电器产品代理合同
- 2024制造行业合同管理系统解决方案
- 2024个人房屋装修合同范文
- 2024年培养皿相关项目可行性分析报告
- 2024山东能源集团高校毕业生校园招聘笔试参考题库附带答案详解
- 初中九年级美术期末艺术测评指标试卷及答案
- 新能源科学与工程专业职业生涯规划
- 高考作文等级评分标准
- 颅骨修补护理查房自尊
- 控制输血严重危害的专项方案
- GH/T 1418-2023野生食用菌保育促繁技术规程干巴菌
- pmma粒料制造工艺
- 2021年上海市春考高考英语试卷(精校Word版含答案)
- 《智能物联网导论》AIoT导论-第3章课件
评论
0/150
提交评论