2024届江苏省盐城市大丰区实验初级中学八上数学期末检测试题含解析_第1页
2024届江苏省盐城市大丰区实验初级中学八上数学期末检测试题含解析_第2页
2024届江苏省盐城市大丰区实验初级中学八上数学期末检测试题含解析_第3页
2024届江苏省盐城市大丰区实验初级中学八上数学期末检测试题含解析_第4页
2024届江苏省盐城市大丰区实验初级中学八上数学期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省盐城市大丰区实验初级中学八上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为()A.6 B.12 C.24 D.482.生物学家发现了一种病毒,其长度约为0.0000000052mm,数据0.0000000052用科学记数法表示正确的是()A. B. C. D.3.将一副三角板按图中方式叠放,那么两条斜边所夹锐角的度数是()A.45°B.75°C.85°D.135°4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③ B.①②③④ C.①③ D.②④5.下列各式的计算中,正确的是()A.2+=2 B.4-3=1C.=x+y D.-=6.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,137.如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑个小正三角形,使它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,则的最小值为()A.3 B.4 C.5 D.68.在实数,0,,,,0.1010010001…(每两个1之间依次多1个0)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个9.下面四个交通标志图中为轴对称图形的是()A. B. C. D.10.如图,点坐标为,点在直线上运动,当线段最短时,点的坐标为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度12.计算:=_________.13.分解因式:_______.14.如图,点E在的边DB上,点A在内部,,AD=AE,AB=AC.给出下列结论:①BD=CE;②;③;④.其中正确的是__________.15.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.16.若关于x的分式方程有增根,则m的值为_____.17.如图,中,,以它的各边为边向外作三个正方形,面积分别为、、,已知,,则______.18.比较大小:_____三、解答题(共66分)19.(10分)如图,铁路上A,B两站(视为直线上两点)相距14km,C,D为两村(可视为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现在要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少千米处.20.(6分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.21.(6分)如图,图中数字代表正方形的面积,,求正方形的面积.(提示:直角三角形中,角所对的直角边等于斜边的一半)22.(8分)观察下列各式:,,,….(1)____________;(2)用含有(为正整数)的等式表示出来,并加以证明;(3)利用上面得到的规律,写出是哪个数的平方数.23.(8分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?24.(8分)已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.25.(10分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是;(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.26.(10分)如图,,点、分别在边、上,且,请问吗?为什么?

参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【题目详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为,,∴此三角形为直角三角形,,故选C.【题目点拨】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.2、C【分析】将原数写成a×10﹣n,原数小数点左边起第一个不为零的数字看小数点向右移动了几位,即为n的值.【题目详解】解:0.0000000052=5.2×10﹣9;故答案为C.【题目点拨】本题考查了绝对值小于1的科学计数法,确定a和n是解答本题的关键.3、B【分析】先根据直角三角板的性质求出∠1及∠2的度数,再根据三角形内角与外角的关系即可解答.【题目详解】解:如图,由题意,可得∠2=45°,∠1+∠2=90°,

∴∠1=90°45°=45°,

∴∠α=∠1+30°=45°+30°=75°.

故答案为:75°.【题目点拨】本题考查的是三角形内角和定理,三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.4、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【题目详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方=a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方=a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形=41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【题目点拨】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.5、D【解题分析】根据二次根式的运算法则分别计算,再判断.【题目详解】A、2和不能合并,故本选项错误;

B、4-3=≠1,故本选项错误;

C、=x+y(x+y≥0),故本选项错误;

D、-2=,故本选项正确.

故选D.【题目点拨】本题考查了对二次根式的混合运算,同类二次根式,二次根式的性质,二次根式的加减法等知识点的理解和掌握,能根据这些性质进行计算是解题的关键.6、D【解题分析】解:A.62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.7、C【分析】根据轴对称图形和中心对称图形的概念即可得.【题目详解】解:如图所示,再涂黑5个小正三角形,即可使得它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,故答案为:C.【题目点拨】本题考查了轴对称图形和中心对称图形的概念,掌握基本概念是解题的关键.8、C【解题分析】试题解析:0,=3是整数,是有理数;,,,0.1010010001…(每两个1之间依次多1个0)是无理数,则无理数共有4个.故选C.考点:无理数.9、D【分析】根据“一个图形沿着某条直线对折,直线两旁的部分能够互相重合”求解.【题目详解】A、不是轴对称图形,故本选项错误;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项正确.

故选D.【题目点拨】本题考查的是轴对称图形,掌握轴对称图形的定义是关键.10、A【分析】当AB与直线y=-x垂直时,AB最短,则△OAB是等腰直角三角形,作B如图,点坐标为,点在直线上运动,当线段最短时,点的坐标为BC⊥x轴即可求得OD,BD的长,从而求得B的坐标.【题目详解】解析:过点作垂直于直线的垂线,点在直线上运动,,为等腰直角三角形,过作垂直轴垂足为,则点为的中点,则,作图可知在轴下方,轴的右方.横坐标为正,纵坐标为负.所以当线段最短时,点的坐标为.故选A.【题目点拨】本题考查了正比例函数的性质,等腰三角形的性质的综合应用,正确根据垂线段最短确定:当AB与直线y=-x垂直时,AB最短是关键.二、填空题(每小题3分,共24分)11、80.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【题目详解】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故答案为80.12、【解题分析】=13、【分析】根据提公因式法即可解答.【题目详解】解:故答案为:.【题目点拨】本题考查了分解因式,解题的关键是掌握提公因式法,准确提出公因式.14、①②③④【分析】只要证明,利用全等三角形的性质即可一一判断.【题目详解】,故①正确;,故②正确;,即,故③正确;,故④正确.故答案为:①②③④.【题目点拨】本题考查了全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.15、50【解题分析】试题分析:由AC=AD=DB,可知∠B=∠BAD,∠ADC=∠C,设∠ADC=x,可得∠B=∠BAD=x,因此可根据三角形的外角,可由∠BAC=105°,求得∠DAC=105°-x,所以在△ADC中,可根据三角形的内角和可知∠ADC+∠C+∠DAC=180°,因此2x+105°-x=180°,解得:x=50°.考点:三角形的外角,三角形的内角和16、1【解题分析】试题分析:增根是化为整式方程后产生的不适合分式方程的根,所以应先增根的可能值,让最简公分母x-1=0,得到x=1,然后代入化为整式方程的方程算出m的值.试题解析:方程两边都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最简公分母x-1=0解得:x=1,当x=1时,m=1故m的值是1.考点:分式方程的增根.17、1【分析】由中,,得,结合正方形的面积公式,得+=,进而即可得到答案.【题目详解】∵中,,∴,∵=,=,=,∴+=,∵,,∴6+8=1,故答案是:1.【题目点拨】本题主要考查勾股定理与正方形的面积,掌握勾股定理,是解题的关键.18、<【分析】由题意先将分数通分,利用无理数的估值比较分子的大小即可.【题目详解】解:通分有,比较分子大小,则有<.故答案为:<.【题目点拨】本题考查无理数的大小比较,熟练掌握无理数与有理数比较大小的方法是解题关键.三、解答题(共66分)19、E站应建立在距A站6km处.理由详见解析【解题分析】当AE=BC=6km时,AD=BE,可判定△ADE≌△BEC,即DE=EC,问题得解.【题目详解】E站应建立在距A站6km处.理由:因为BE=AB-AE=14-6=8(km),所以AD=BE,AE=BC.在△ADE和△BEC中,,所以△ADE≌△BEC(SAS).所以DE=EC.所以E站应建立在距A站6km处.【题目点拨】此题主要考查了全等三角形的判定和性质,熟练掌握“一线三等角模型”及三角形全等的判定定理是解题关键.20、(1)15秒;(2)5秒;(3)20秒【分析】(1)由点N运动路程=点M运动路程+AB间的路程,列出方程求解,捷克得出结论;(2)由等边三角形的性质可得AN=AM,可列方程求解,即可得出结论;(3)由全等三角形的性质可得CM=BN,可列方程求解,即可得出结论.【题目详解】(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N运动的时间为20秒.【题目点拨】此题主要考查等边三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质、等边三角形的性质.21、1【分析】作AD⊥BC,交BC延长线于D,已知∠ACB=120°,可得∠ACD=60°,∠DAC=30°;即可求出AD,进而求出BD,由勾股定理AB2=AD2+BD2,即可求得AB2即为正方形P的面积.【题目详解】如图,作AD⊥BC,交BC延长线于D,∵∠ACB=120°,∴∠ACD=60°,∠DAC=30°;∴CD=AC=1,∴AD=,在Rt△ADB中,BD=BC+CD=3+1=4,AD=,根据勾股定理得:AB2=AD2+BD2=3+16=1;∴正方形P的面积=AB2=1.【题目点拨】本题考查了特殊角三角函数解直角三角形和利用勾股定理解直角三角形.22、(1);(2)或,理由见解析;(3)【分析】(1)根据规律为(2)根据规律为(3)【题目详解】解:(1).故答案为:;(2)或.理由如下:.(3).【题目点拨】本题考查了数字的规律,根据给出的式子找到规律是解题的关键.23、(1)2元;(2)第二批花的售价至少为元;【解题分析】(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.【题目详解】(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,根据题意得:,解得:,经检验:是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由可知第二批菊花的进价为元.设第二批菊花的售价为m元,根据题意得:,解得:.答:第二批花的售价至少为元.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24、y=﹣2x+2,x=﹣2【分析】设方程,代入当x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论