下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WSN中利用XGBoost和加权自适应HFLMS的数
据约减组合预测方法
Introduction
Wirelesssensornetworks(WSNs)arewidelyusedinavarietyofapplicationssuchasenvironmentalmonitoring,industrialautomation,andhealthcare.InWSNs,sensornodesareresponsibleforsensing,processing,andcommunicatingdatatoacentralnode.However,duetolimitedresourcessuchasenergy,memory,andprocessingpower,theamountofdatathatcanbetransmittedfromthesensornodestothecentralnodeisrestricted.Therefore,datareductiontechniquesarerequiredforefficientandeffectivecommunicationinWSNs.
Inthispaper,weproposeadatareductiontechniquethatcombinestheXGBoostalgorithmandweightedadaptiveHFLMSalgorithmtopredictmissingorerroneousdatavaluesinWSNs.Theproposedmethodisbasedonensemblelearning,wheremultiplemodelsarecombinedtoimprovetheaccuracyoftheprediction.
XGBoostAlgorithm
XGBoostisasupervisedlearningalgorithmthatisusedforclassificationandregressiontasks.Itisatree-basedmodelthatoptimizesthegradientboostingalgorithm.XGBoostusesaseriesofdecisiontreestomakepredictionsbycombiningthepredictionsofeachtree.Themodelistrainedusingagradientdescentoptimizationalgorithmthatminimizesthelossfunction.
TheadvantageofXGBoostisitsabilitytohandlemissingvaluesandoutliers,whicharecommoninWSNs.XGBoostalsohastheabilitytohandledifferenttypesofdatasuchascategorical,numerical,andbinarydata.
WeightedAdaptiveHFLMSAlgorithm
TheweightedadaptiveHFLMSalgorithmisarecursiveleast-squaresalgorithmthatisusedtoestimatetheparametersofalinearmodel.Itupdatesthemodelparametersasnewsamplesbecomeavailableandusesaweightingfunctiontogivemoreimportancetorecentsamples.
InWSNs,theweightedadaptiveHFLMSalgorithmcanbeusedtoestimatethemissingorerroneousdatavaluesbyusingtheavailable
datafromtheneighboringnodes.Thealgorithmtakesintoaccountthespatialandtemporalcorrelationsofthedataandadaptstheweightingfunctionaccordingly.
DataReductionTechniquebyEnsembleLearning
TheproposeddatareductiontechniquecombinesthestrengthsoftheXGBoostalgorithmandtheweightedadaptiveHFLMSalgorithmbyusingensemblelearning.Ensemblelearningisamachinelearningtechniquethatcombinesmultiplemodelstoimprovetheaccuracyoftheprediction.
Inthistechnique,XGBoostisusedtogeneratetheinitialpredictionsforthemissingorerroneousdatavalues.ThesepredictionsarethenfedintotheweightedadaptiveHFLMSalgorithm,whichusestheavailabledatafromtheneighboringnodestorefinetheinitialpredictions.TheweightedadaptiveHFLMSalgorithmadaptstheweightingfunctionbasedonthespatialandtemporalcorrelationsofthedata.
ThefinalpredictionisobtainedbycombiningthepredictionsofXGBoostandweightedadaptiveHFLMSusingaweightedaverage.Theweightsareassignedbasedontheaccuracyofeachmodelandareupdateddynamicallytoensurethatthemostaccuratemodelsaregivenmoreweight.
ExperimentalResults
Toevaluatetheperformanceoftheproposeddatareductiontechnique,weconductedexperimentsonaWSNdataset.Thedatasetconsistsoftemperatureandhumidityreadingsfromsensornodesinagreenhouse.
Wecomparedtheperformanceoftheproposedmethodwithotherstate-of-the-artdatareductiontechniquessuchaslinearregression,supportvectorregression,andk-nearestneighborregression.
Theresultsshowthattheproposedmethodoutperformstheothertechniquesintermsofpredictionaccuracy,rootmeansquarederror,andmeanabsoluteerror.Theproposedmethodalsohastheadvantageofbeingabletohandlemissingvaluesandoutliers,whicharecommoninWSNs.
Conclusion
Inthispaper,weproposedadatareductiontechniquethatcombinestheXGBoostalgorithmandweightedadaptiveHFLMSalgorithmtopredictmissingorerroneousdatavaluesinWSNs.The
proposedmethodisbasedonensemblelearning,wheremultiplemodelsarecombinedtoimprovetheaccuracyoftheprediction.
Theresultsoftheexperimentsshowthattheproposedmethodoutperformsotherstate-of-the-artdatareductiontechniquesintermsofpredictionaccuracy,rootmeansquarederror,andmeanabsoluteerror.Theproposedmethodhastheadvantageofbeingabletohandlemissingvaluesan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房屋装修合同:甲方与乙方之间的房屋装修合同3篇
- 《水利工程制》课件
- 南瑞继保培训
- 二零二四年度二手叉车交易合同
- 《皖智中考历史》课件
- 2024年度二手房买卖合同中介服务退出策略2篇
- 2024年度短视频拍摄场地租赁合同3篇
- 2024版钢筋工程保险合同2篇
- 二零二四年劳动合同的薪酬与福利条款2篇
- 溺水患者急救护理
- 600D涤纶牛津布技术规格
- MOXO-d-CPT工具在儿童青少年执行功能评估课件
- 2022年江苏凤凰出版传媒集团有限公司招聘笔试试题及答案解析
- 光伏发电项目工程施工分包合同
- 帕金森病非运动症状课件
- 信息中心应急演练记录表(含内容)
- 饰面用花岗岩矿普查实施方案
- 银行防抢劫应急预案演练三篇
- 哈工大自动控制原理大作业
- 赴昆山市学习考察招商引资的几点启示和思考
- 超星尔雅学习通【军事理论(上海财经大学)】章节测试及答案
评论
0/150
提交评论