版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023/10/161.1.3四种命题的相互关系2023/10/16回顾交换原命题的条件和结论,所得的命题是________同时否定原命题的条件和结论,所得的命题是________交换原命题的条件和结论,并且同时否定,所得的命题是__________逆命题。否命题。逆否命题。2023/10/16原命题,逆命题,否命题,逆否命题四种命题形式:
原命题:
逆命题:
否命题:逆否命题:若p,则q若q,则p若┐p,则┐q若┐q,则┐p2023/10/16观察与思考?你能说出其中任意两个命题之间的关系吗?2023/10/162)原命题:若a=0,则ab=0。逆命题:若ab=0,则a=0。否命题:若a≠0,则ab≠0。逆否命题:若ab≠0,则a≠0。(真)(假)(假)(真)(真)2.四种命题的真假写成下面命题的四种命题并判断真假:逆命题:若x2-5x+6=0,则x=2或x=3。否命题:若x≠2且x≠3,则x2-5x+6≠0。逆否命题:若x2-5x+6≠0,则x≠2且x≠3。(真)(真)(真)3)原命题:若x∈A∪B,则x∈UA∪UB。逆命题:x∈UA∪UB,x∈A∪B。否命题:x
A∪B,x
UA∪UB。逆否命题:x
UA∪UB,x
A∪B。假假假假1)原命题:若x=2或x=3,则x2-5x+6=0。2023/10/16四种命题的真假,有且只有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(1)原命题为真,则其逆否命题一定为真。但其逆命题、否命题不一定为真。(2)若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。(3)原命题与逆否命题同真假。原命题的逆命题与否命题同真假。总结原命题若p则q逆命题若q则p否命题若﹁p则﹁q逆否命题若﹁q则﹁p互为逆否同真同假互为逆否同真同假互逆命题真假无关互逆命题真假无关互否命题真假无关互否命题真假无关2023/10/161.判断下列说法是否正确。1)一个命题的逆命题为真,它的逆否命题不一定为真;(对)2)一个命题的否命题为真,它的逆命题一定为真。(对)2.四种命题真命题的个数可能为()个。答:0个、2个、4个。如:原命题:若A∪B=A,则A∩B=φ。逆命题:若A∩B=φ,则A∪B=A。否命题:若A∪B≠A,则A∩B≠φ。逆否命题:若A∩B≠φ,则A∪B≠A。(假)(假)(假)(假)3)一个命题的原命题为假,它的逆命题一定为假。(错)4)一个命题的逆否命题为假,它的否命题为假。(错)练习2023/10/16例:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。(1)若q<1,则方程有实根。(2)若ab=0,则a=0或b=0.(3)若或,则。(4)若,则x,y全为零。2023/10/16原结论反设词原结论反设词是至少有一个都是至多有一个大于至少有n个小于至多有n个对所有x,成立对任何x,不成立准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式.
不是不都是不大于大于或等于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某x,不成立存在某x,成立2023/10/16反证法2023/10/16反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的。即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。2023/10/16例:(最简分式)2023/10/16反证法的步骤:假设命题的结论不成立,即假设结论的反面成立。从这个假设出发,通过推理论证,得出矛盾。由矛盾判定假设不正确,从而肯定命题的结论正确。推理过程中一定要用到才行显而易见的矛盾(如和已知条件矛盾).2023/10/16反证法2023/10/16例证明:若p2+q2=2,则p+q≤2.
将“若p2+q2=2,则p+q≤2”看成原命题。由于原命题和它的逆否命题具有相同的真假性,要证原命题为真命题,可以证明它的逆否命题为真命题。即证明为真命题2023/10/16假设原命题结论的反面成立看能否推出原命题条件的反面成立尝试成功得证例证明:若p2+q2=2,则p+q≤2.2023/10/16变式练习1、已知。求证:这说明,原命题的逆否命题为真命题,从而原命题为真命题。解:假设p+q>2,那么q>2-p,根据幂函数的单调性,得即所以因此2023/10/16可能出现矛盾四种情况:与题设矛盾;与反设矛盾;与公理、定理矛盾;在证明过程中,推出自相矛盾的结论。2023/10/16这些条件都与已知矛盾所以原命题成立证明:假设不大于则或因为所以例1用反证法证明:如果a>b>0,那么.
2023/10/16变式:若a2能被2整除,a是整数,
求证:a也能被2整除.证:假设a不能被2整除,则a必为奇数,故可令a=2m+1(m为整数),由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1,此结果表明a2是奇数,这与题中的已知条件(a2能被2整除)相矛盾,∴a能被2整除.2023/10/16例2
圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于P,且AB、CD不是直径.求证:弦AB、CD不被P平分.证明:假设弦AB、CD被P平分,∵P点一定不是圆心O,连接OP,根据垂径定理的推论,OP⊥AB,OP⊥CD即过点P有两条直线与OP都垂直,这与垂线性质矛盾,∴弦AB、CD不被P平分。2023/10/162023/10/162023/10/16原结论反设词原结论反设词是至少有一个都是至多有一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民间收藏馆改造工程协议
- 房屋租赁合同噪音控制
- 风力发电植筋施工协议
- 河岸加固排洪渠施工合同
- 银行与房地产企业合作协议
- 2022年天津市各地中考物理模拟试题分类:热学选择题
- 中南林业科技大学《公共管理学(双语)》2021-2022学年第一学期期末试卷
- 2022年人教版初中物理中考一轮复习专题训练15-电流和电路
- 2019-2021年广东省广州市中考物理试题分类汇编-综合计算题
- 中南林业科技大学《材料制备科学与技术》2023-2024学年第一学期期末试卷
- 乔(小学数学课程标准解读)
- (15.5)-专题五 第七讲 社会基本矛盾的历史作用
- 《一线带班》读书分享
- 腾讯广告营销顾问(中级)考试必备题库(含答案)
- 连接器手册(中文版)
- 多囊卵巢综合征的中西医诊疗方法-课件
- 带电宝典-配网不停电作业绝缘遮蔽
- 人教版英语八年级上册-Unit-8-Grammar-Focus教学课件
- 小儿麻醉并发症
- (完整版)硬件单板测试模板
- 现代电化学电化学基础
评论
0/150
提交评论