




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第三十八中学2024届八年级数学第一学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在平面直角坐标系中,已知点P的坐标为(3,4),点P与点Q关于y轴对称,则Q点的坐标是()A.(3,4) B.(-3,4) C.(3,-4) D.(-3,-4)2.在实数中,无理数的个数为()A.1个 B.2个 C.3个 D.4个3.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等4.直线过点,,则的值是()A. B. C. D.5.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是()A.①②③④ B.①②③ C.②④ D.①③6.下面说法中,正确的是()A.把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解B.分式方程中,分母中一定含有未知数C.分式方程就是含有分母的方程D.分式方程一定有解7.把19547精确到千位的近似数是()A. B. C. D.8.下列命题:①同旁内角互补,两直线平行;②若,则;③对角线互相垂直平分的四边形是正方形;④对顶角相等.其中逆命题是真命题的有()A.1个 B.2个 C.3个 D.4个9.如图,是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x,y长示小长方形的两边长(x>y)请观察图案,以下关系式中不正确的是()A.x2+y2=16 B.x-y=3 C.4xy+9=25 D.x+y=510.在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为()A.50° B.40° C.30° D.25°11.等于()A. B. C. D.12.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4二、填空题(每题4分,共24分)13.比较大小:_________(填“>”或“<”)14.若是一个完全平方式,则m=________15.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.16.如图,在中,和的平分线交于点,得;和的平分线交于点,得;…;和的平分线交于点,得,则与的关系是______.17.如图,点在内,因为,,垂足分别是、,,所以平分,理由是______.18.已知,正比例函数经过点(-1,2),该函数解析式为________________.三、解答题(共78分)19.(8分)(1)式子++的值能否为0?为什么?(2)式子++的值能否为0?为什么?20.(8分)已知一次函数的图象经过点(2,1)和(0,﹣2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(﹣4,6)是否在该函数图象上.21.(8分)先化简,再求值:(1)已知,求的值;(2),其中.22.(10分)两个大小不同的等腰直角三角板按图①所示的位置放置,图②是由它抽象画出的几何图形,,,,,,在同一条直线上,连接.(1)请找出图②中与全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:.23.(10分)已知长方形的长为,宽为,且,.(1)求长方形的周长;(2)当时,求正方形的周长.24.(10分)如图1,直线AB交x轴于点A(4,0),交y轴于点B(0,-4),(1)如图,若C的坐标为(-1,,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.25.(12分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求的解析式.26.如图,一条直线分别与直线、直线、直线、直线相交于点,且,.求证:.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据轴对称---平面直角坐标系中关于y轴对称的点的特点:纵坐标不变,横坐标变为相反数,可知Q点的坐标为(-3,4).故选B.点睛:此题主要考查了轴对称---平面直角坐标系,解题关键是明确坐标系中的轴对称特点是:关于哪个轴对称时,那个坐标不变,另一个变为相反数,直接可求解,比较简单.2、B【分析】根据无理数的概念逐一进行判定即可.【题目详解】都是有理数,是无理数所以无理数有2个故选:B.【题目点拨】本题主要考查无理数,能够区别有理数与无理数是解题的关键.3、B【解题分析】试题分析:A.对顶角相等,所以A选项为真命题;B.两直线平行,同旁内角互补,所以B选项为假命题;C.两点确定一条直线,所以C选项为真命题;D.角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.考点:命题与定理.4、B【分析】分别将点,代入即可计算解答.【题目详解】解:分别将点,代入,得:,解得,故答案为:B.【题目点拨】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.5、B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【题目详解】解:∵BE是中线,
∴AE=CE,
∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;
∵CF是角平分线,
∴∠ACF=∠BCF,
∵AD为高,
∴∠ADC=90°,
∵∠BAC=90°,
∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,
∴∠ABC=∠CAD,
∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,
∴∠AFG=∠AGF,故②正确;
∵AD为高,
∴∠ADB=90°,
∵∠BAC=90°,
∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,
∴∠ACB=∠BAD,
∵CF是∠ACB的平分线,
∴∠ACB=2∠ACF,
∴∠BAD=2∠ACF,
即∠FAG=2∠ACF,故③正确;
根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;
故选B.【题目点拨】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.6、B【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断,即可得出答案.【题目详解】解:、把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解,故本选项错误;、分式方程中,分母中一定含有未知数,故本选项正确;、根据分式方程必须具备两个条件:①分母含有未知数;②是等式,故本选项错误;、分式方程不一定有解,故本选项错误;故选:B.【题目点拨】此题考查了分式方程的定义,判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).7、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【题目详解】19547=≈.故选C.【题目点拨】本题主要考查求近似数。掌握四舍五入法求近似数,是解题的关键.8、B【分析】首先写出各个命题的逆命题,然后进行判断即可.【题目详解】解:①同旁内角互补,两直线平行,其逆命题:两直线平行,同旁内角互补是真命题;
②若,则,其逆命题:若,则是假命题;③对角线互相垂直平分的四边形是正方形,其逆命题:正方形的对角线互相垂直平分是真命题;
④对顶角相等,其逆命题:相等的角是对顶角是假命题;
故选:B.【题目点拨】本题考查了命题与定理,判断一件事情的语句,叫做命题,也考查了逆命题.9、A【分析】分析已知条件,逐一对选项进行判断即可.【题目详解】通过已知条件可知,大正方形的边长为5,小正方形的边长为3,通过图中可以看出,大正方形的边长可以用来表示,所以D选项正确,小正方形的边长可以用来表示,所以B选项正确。大正方形的面积可以用小正方形的面积加上四个小长方形的面积得到,所以C选项正确,故不正确的选项为A选项.【题目点拨】本题属于数形结合的题目,看懂题意,能够从图中获取有用的信息是解题的关键.10、A【分析】根据三角形内角和定理求出∠B+∠C,根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据等腰三角形的性质计算即可.【题目详解】∵∠BAC=115°,∴∠B+∠C=65°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAG=∠BAC-(∠EAB+∠GAC)=∠BAC-(∠B+∠C)=50°,故选A.【题目点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11、D【解题分析】根据负整数指数幂的运算法则计算即可.【题目详解】解:.故选:D.【题目点拨】本题考查了负整数指数幂的运算法则,属于应知应会题型,熟知负整数指数幂的运算法则是解题关键.12、A【分析】根据第1~4组的频数求得第5组的频数,再根据即可得到结论.【题目详解】解:第5组的频数为:,∴第5组的频率为:,故选:A.【题目点拨】此题主要考查了频数与频率,正确掌握频率求法是解题关键.二、填空题(每题4分,共24分)13、>【解题分析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【题目详解】∵,∴1>1,∴.故答案为:>.【题目点拨】本题考查了实数大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.14、±1【分析】利用完全平方公式的结构特征可确定出m的值.【题目详解】解:∵多项式是一个完全平方式,∴m=±2×1×4,即m=±1,故答案为:±1.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.15、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【题目详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【题目点拨】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.16、或【分析】根据角平分线的性质和外角的性质,得到,同理可得,则,由此规律可得,然后得到答案.【题目详解】解:∵平分,平分,∴,,∵,∴,∴,即,同理可得:,……∴,……∴;当时,有或;故答案为:或.【题目点拨】本题考查了三角形的角平分线性质和外角性质,解题的关键是掌握角平分线的性质和外角的性质得到,从而找到规律进行求解.17、角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【题目详解】解:∵PM⊥OA,PN⊥OB,PM=PN∴OP平分∠AOB(在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【题目点拨】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.18、y=-2x【解题分析】把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式.【题目详解】设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【题目点拨】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.三、解答题(共78分)19、(1)不能为1,理由见解析;(2)不能为1,理由见解析【分析】(1)将原式通分,相加,根据原式的分母不为1,可得x≠1,y≠1,z≠1,从而分子也不为1,则原式的值不能为1;(2)将原式通分,相加,根据原式的分母不为1,可得y﹣z≠1,x﹣y≠1,z﹣x≠1,从而分子也不为1,则原式的值不能为1.【题目详解】解:(1),,,,,式子的值不能为1;(2),,,,,式子的值不能为1.【题目点拨】本题考查了分式的加减及偶次方的非负性,掌握通分的方法,并明确偶次方的非负性,是解题的关键.20、(1)(,0);(2)点(﹣4,6)不在该函数图象上【分析】(1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,即可求得与x轴的交点坐标;(2)将x=﹣4代入解析式计算y的值,与6比较即可.【题目详解】解:(1)设该函数解析式为y=kx+b,把点(2,1)和(0,﹣2)代入解析式得2k+b=1,b=﹣2,解得k=,b=﹣2,∴该函数解析式为y=x﹣2,令y=0,则x﹣2=0,解得x=,∴该函数图象与x轴的交点为(,0);(2)当x=﹣4时,y=×(﹣4)﹣2=﹣8≠6,∴点(﹣4,6)不在该函数图象上.【题目点拨】此题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.21、(1),;(2),.【分析】(1)先化简要求的代数式,然后将ab=12代入求值;(2)先化简分式,然后将代入求值即可.【题目详解】(1)===,将ab=12代入,得原式=2;(2)===,
当时,原式=.【题目点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.22、(1)与△ABE全等的三角形是△ACD,证明见解析;(2)见解析.【分析】(1)此题根据△ABC与△AED均为等腰直角三角形,容易得到全等条件证明△ABE≌△ACD;(2)根据(1)的结论和已知条件可以证明DC⊥BE.【题目详解】解答:(1)证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,∵,∴△ABE≌△ACD.(2)∵△ABE≌△ACD,∴∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【题目点拨】此题是一个实际应用问题,利用全等三角形的性质与判定来解决实际问题,关键是理解题意,得到所需要的已知条件.23、(1);(2)【分析】(1)先化简二次根式,然后列式计算即可;(2)利用二次根式乘法计算即可得出答案.【题目详解】(1)∵a==,b==,∴长方形的周长是:2(a+b)=2(+)=;(2)设正方形的边长为x,则有x2=ab,∴x====,∴正方形的周长是4x=.【题目点拨】本题考查了二次根式的应用,正确化简二次根式是解答本题的关键.24、(1)P(0,1);(2)证明见解析;(3)不变;1.【分析】(1)利用坐标的特点,得出△OAP≌△OB,得出OP=OC=1,得出结论;
(2)过O分别做OM⊥CB于M点,ON⊥HA于N点,证出△COM≌△PON,得出OM=ON,HO平分∠CHA,求得结论;
(3)连接OD,则OD⊥AB,证得△ODM≌△ADN,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=1.【题目详解】解:∵AH⊥BC于H,∴∠OAP+∠OPA=∠BPH+∠OBC=90°,∴∠OAP=∠OBC在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门窗居间协议合同的模板
- 项目培训服务协议书范本
- 汽车买卖合同协议书样本
- 防火门委托定做合同范本
- 游乐场场地租赁合同协议
- 污水处理排水协议书范本
- 洗涤服务合同协议书模板
- 江苏农业农村保险协议书
- 电梯屏广告采购合同范本
- 鲜切鱼模板售卖合同范本
- 高中英语选择性必修四 2019人教版新教材全册课文与翻译
- 1.4点电荷电场匀强电场课件(13张PPT)
- EBU导管选择和操作长头指引导管课件
- MT/T570—1996煤矿电气图专用图形符号
- 燃气输配工程设计施工验收技术规范 DB11T 302-2005
- 自动喷水灭火系统严密性试验记录
- 河北省城市集中式饮用水水源保护区划分
- 工程材料采购方案(完整版)
- 部编本新人教版一年级下册语文教学计划
- 慢阻肺的健康教育
- CH-iVMS-4200部署方案
评论
0/150
提交评论