版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实数(1)(1)无理数和实数的概念;(2)实数的分类;(3)实数和数轴上的点一一对应。学习目标你认识下列各数吗?有理数是分类:有理数整数分数正整数零负整数正分数负分数有理数正数负数正整数零负整数正分数负分数引入把下列各数写成小数的形式:整数和分数统称为有理数有限小数无限循环小数有限小数和无限循环小数叫有理数使用计算器,把下列有理数化成小数的形式:
=3.0=-0.6=5.875
任何一个有理数都能写成有限小数或无限循环小数的形式反过来任何有限小数或无限循环小数也都是有理数;35-47891111905930.81~~0.12~~0.5~~把下列各数写成小数的形式:无限不循环小数无限不循环小数叫无理数无理数:无限不循环小数有理数:有限小数或无限循环小数实数按定义分类:分数整数女孩子男孩子妈妈开方开不尽的数有规律但不循环的数含有的数~负实数正实数数实正有理数负有理数按性质分类:0正无理数负无理数性格开朗的大孩子性格内向的小孩子0正实数负实数实数的分类实数有理数无理数整数分数有限小数或无限循环小数无限不循环小数你还有其它分类方法吗?归纳实数的分类实数正实数负实数正有理数正无理数你知道怎样区分有理数和无理数吗?0负无理数负有理数(正负)把下列各数分别填入相应的集合内:(相邻两个3之间的7的个数逐次加1)
有理数集合
无理数集合把下列各数分别填在相应的集合中;课堂展示一有理数集合无理数集合0-80.63.1415926~3—√3—√36227—√70.191191119…每相邻两个9之间依次多一个1判断下列说法是否正确;(1)无限小数都是无理数.()(2)无理数都是无限小数.()(3)带根号的数都是无理数.()课堂展示一对错错引入在数轴上表示下列各数:-3-2-101234有理数都可以用数轴上的点表示
无限不循环的小数----叫做无理数.(1)你能举出一些无理数吗?试一试每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?如果可以你能在数轴上找到表示这样的无理数的点吗?是有理数吗?是无理数探究
以单位长度为边长画一个正方形,以原点为圆心,正方形对角线为半径画弧,与正半轴的交点表示什么?-2-1012无理数
可以用数轴上的点表示这一秒不放弃!下一秒有奇迹!实数与数轴上点的关系?
每一个有理数都可以用数轴上的点表示;每一个无理数都可以用数轴上的点表示;数轴上的点有些表示有理数,有些表示无理数。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数。
即实数和数轴上的点是一一对应的。在数轴上的两个点,右边的点表示的实数总比左边的点表示的实数大。实数与数轴上点一一对应课堂展示二40-2ABCDE请将数轴上的各点与下列实数对应起来;-1.5—√2~3—√5探究的相反数是
;的相反数是
;的相反数是
;-2-1012a的相反数是-a探究-2-1012正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.
在实数范围内,相反数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。想一想a是一个实数,它的相反数为-a
0的相反数是_______的相反数是_______的相反数是_______一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0例1求下列各数的相反数和绝对值:解:因为所以的相反数分别为由绝对值的意义得:判断快枪手——看准最快最准!1.实数不是有理数就是无理数。()2.无理数都是无限不循环小数。()4.无理数都是无限小数。()3.带根号的数都是无理数。()5.无理数一定都带根号。()××课堂检测判断题①有理数都可以用数轴上的点表示;()②无理数都可以用数轴上的点表示;()③任意两个有理数之间都有有理数,因此,有理数可以铺满整个数轴;()④任意两个无理数之间都有无理数,因此,无理数可以铺满整个数轴;()⑤没有最小的有理数;()⑥没有最小的无理数;()⑦没有绝对值最小的有理数;()⑧没有绝对值最小的无理数;()×××√√√√√练习
填空:(1)的相反数是__________
(5)绝对值是
_________(2)的倒数是____,(3)||=___________(4)绝对值等于的数是
_________的平方是___
.(6)比较大小:-7
填空:(1)的相反数是__________
(2)
的相反数是(3)___________(4)绝对值等于的数是
_________
练习:5、绝对值等于的数是。实力神枪手——看谁百发百中填空2、的相反数是,绝对值是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五上肢筋膜六上肢局部结构一肩肌二臂肌三前臂肌四手
- 一休息指一段时间内相对减少活动使人生理和心理上得到松弛清除
- 《呼吸系统的用药》课件
- 危重困难病人护理笔记
- 《入库业务》课件
- 学校管理员工培训
- 数学学案:课堂导学反证法
- 公共部门绩效管理案例分析
- 《送电线路施工测量》课件
- 产科大出血的容量管理
- 医疗卫生机构反恐
- 2024年广东普通专升本《公共英语》完整版真题
- 数据中心储能白皮书
- 化学实验室安全智慧树知到期末考试答案2024年
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- 浅谈美食类自媒体《日食记》的商业价值和运营策略
- 室内设计大学生职业生涯规划模板
- 客户服务方面的SWOT分析
- 电工职业生涯展示
- 经典房地产营销策划培训(全)
- 儿童视力保护培训课件
评论
0/150
提交评论