版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省蚌埠市名校八上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,中,于,平分交于,点到的距离为,则的周长为()A. B. C. D.2.下列各式中,是最简二次根式的是()A. B. C. D.3.用科学记数法表示:0.000000109是()A.1.09×10﹣7 B.0.109×10﹣7 C.0.109×10﹣6 D.1.09×10﹣64.下列四个图形中,不是轴对称图形的是()A. B. C. D.5.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为()时,ED恰为AB的中垂线.A.15° B.20° C.30° D.25°6.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20° B.40° C.50° D.70°7.周长38的三角形纸片(如图甲),,将纸片按图中方式折叠,使点与点重合,折痕为(如图乙),若的周长为25,则的长为()A.10 B.12 C.15 D.138.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是()A.7 B.8 C.12 D.139.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为()A.3 B.10 C.6.5 D.3或6.510.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.11.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A.AB=A′B′,AC=A′C′,BC=B′C′ B.∠A=∠A′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′,∠A=∠A′ D.AB=A′B′,BC=B′C′,∠C=∠C′12.下列美术字中,不属于轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.若分式方程无解,则a=_____________.14.给出下列5种图形:①平行四边形②菱形③正五边形、④正六边形、⑤等腰梯形中,既是轴对称又是中心对称的图形有________个.15.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.16.3的算术平方根是_____;-8的立方根是_____.17.如图,已知中,,AD平分,如果CD=1,且的周长比的周长大2,那么BD=____.18.如图,在扇形BCD中,∠BCD=150°,以点B为圆心,BC长为半径画弧交BD于点A,连接AC,若BC=8,则图中阴影部分的面积为________三、解答题(共78分)19.(8分)已知2是的平方根,是的立方根,求的值.20.(8分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.21.(8分)在平面直角坐标系中,已知,,点,在轴上方,且四边形的面积为32,(1)若四边形是菱形,求点的坐标.(2)若四边形是平行四边形,如图1,点,分别为,的中点,且,求的值.(3)若四边形是矩形,如图2,点为对角线上的动点,为边上的动点,求的最小值.22.(10分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.23.(10分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875八年级7880.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.24.(10分)已知,.(1)若,作,点在内.①如图1,延长交于点,若,,则的度数为;②如图2,垂直平分,点在上,,求的值;(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.25.(12分)如图,是等腰直角三角形,,为延长线上一点,点在上,的延长线交于点,.求证:.26.(1)解方程:(2)先化简,再求值:,其中.
参考答案一、选择题(每题4分,共48分)1、C【分析】由角平分线的性质易得CE=点E到AB的距离等于,根据等角的余角相等可得得,再证明△CEF是等边三角形即可得到结论.【题目详解】∵,于点,平分∴CE=点E到AB的距离等于,,,,,,,∵,∴,∵,∴,∵∴△CEF是等边三角形∴△CEF的周长为:4×3=12cm.故选:C.【题目点拨】此题主要考查了角平分线的性质和等边三角形的判定,注意利用直角三角形的性质.2、D【分析】根据最简二次根式的概念对每个选项进行判断即可.【题目详解】A、,不是最简二次根式,此选项不正确;B、,不是最简二次根式,此选项不正确;C、,不是最简二次根式,此选项不正确;D、,不能再进行化简,是最简二次根式,此选项正确;故选:D.【题目点拨】本题考查了最简二次根式,熟练掌握概念是解题的关键.3、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】用科学记数法表示:0.000000109是1.09×10﹣1.故选:A.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、B【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【题目详解】A、是轴对称图形,此项不符题意B、不是轴对称图形,此项符合题意C、是轴对称图形,此项不符题意D、是轴对称图形,此项不符题意故选:B.【题目点拨】本题考查了轴对称图形的定义,熟记定义是解题关键.5、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【题目详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【题目点拨】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.6、C【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【题目详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【题目点拨】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.7、B【分析】由折叠的性质可得AD=BD,由△ABC的周长为38cm,△DBC的周长为25cm,可列出两个等式,可求解.【题目详解】∵将△ADE沿DE折叠,使点A与点B重合,
∴AD=BD,
∵△ABC的周长为38cm,△DBC的周长为25cm,
∴AB+AC+BC=38cm,BD+CD+BC=AD+CD+BC=AC+BC=25cm,
∴AB=13cm=AC
∴BC=25-13=12cm
故选:B.【题目点拨】本题考查了翻折变换,熟练运用折叠的性质是本题的关键.8、B【分析】根据垂直平分线的判定和性质,得到AD=BD,即可得到BC的长度.【题目详解】解:根据题意可知,直线MN是AB的垂直平分线,∴BD=AD=5,∴BC=BD+CD=5+3=8;故选:B.【题目点拨】本题考查了线段垂直平分线的判定和性质,解题的关键是熟练掌握垂直平分线的性质定理进行解题.9、C【分析】分腰长为3和底边长为3两种情况,注意用三角形三边关系验证.【题目详解】若腰长为3,则底边长为此时三边长为3,3,10∵,不能组成三角形∴腰长为3不成立,舍去若底边长为3,则腰长为此时三角形三边长为6.5,6.5,3,满足三角形三边关系所以等腰三角形的腰长为6.5故选:C.【题目点拨】本题主要考查等腰三角形的定义及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.10、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【题目详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【题目点拨】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.11、D【解题分析】根据全等三角形的判定方法对各项逐一判断即得答案.【题目详解】解:A、AB=A′B′,AC=A′C′,BC=B′C′,根据SSS可判定△ABC和△A′B′C′全等,本选项不符合题意;B、∠A=∠A′,∠B=∠B′,AC=A′C′,根据AAS可判定△ABC和△A′B′C′全等,本选项不符合题意;C、AB=A′B′,AC=A′C′,∠A=∠A′,根据SAS可判定△ABC和△A′B′C′全等,本选项不符合题意;D、AB=A′B′,BC=B′C′,∠C=∠C′,这是SSA,不能判定△ABC和△A′B′C′全等,本选项符合题意.故选:D.【题目点拨】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键.12、A【解题分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【题目详解】由轴对称图形的定义定义可知,A不是轴对称图形,B、C、D都是轴对称图形.故选A.【题目点拨】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.二、填空题(每题4分,共24分)13、1【分析】先通过去分母,把分式方程化为整式方程,求出,根据分式方程无解,可得是分式方程有增根,进而即可求解.【题目详解】,去分母得:,解得:,∵分式方程无解,∴是增根,即:8-a=1,∴a=1.故答案是:1.【题目点拨】本题主要考查分式方程的增根,学会去分母,把分式方程化为整式方程,熟练掌握分式方程的增根的意义:使分式方程的分母等于零的根,是解题的关键.14、2【分析】根据轴对称图形与中心对称图形的概念和平行四边形、菱形、正五边形、正六边形、等腰梯形的性质求解.【题目详解】解:①是中心对称图形;②为轴对称图形也为中心对称图形;③为轴对称图形;④为轴对称图形也为中心对称图形;⑤为轴对称图形.故答案为:2.【题目点拨】此题考查轴对称图形,中心对称图形.解题关键在于掌握当轴对称图形的对称轴是偶数条时,一定也是中心对称图形;偶数边的正多边形既是轴对称图形,也是中心对称图形;奇数边的正多边形只是轴对称图形.15、1【分析】连接,由于是等腰三角形,点是边的中点,故,根据三角形的面积公式求出的长,再根据是线段的垂直平分线可知,点关于直线的对称点为点,故的长为的最小值,由此即可得出结论.【题目详解】解:连接,是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,的周长最短.故答案为:1.【题目点拨】本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.16、-2【分析】根据算术平方根和立方根的定义直接计算即可求解.【题目详解】3的算术平方根是,的立方根是.故答案是:,.【题目点拨】本题考查了算术平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1.17、【分析】过点D作DM⊥AB于点M,根据角平分线的性质可得CD=MD,进而可用HL证明Rt△ACD≌△AMD,可得AC=AM,由的周长比的周长大2可变形得到BM+BD=3,再设BD=x,则BM=3-x,然后在Rt△BDM中根据勾股定理可得关于x的方程,解方程即可求出x,从而可得答案.【题目详解】解:过点D作DM⊥AB于点M,则,∵AD平分,∴CD=MD,又∵AD=AD,∴Rt△ACD≌△AMD(HL),∴AC=AM,∵的周长比的周长大2,∴(AB+AD+BD)-(AC+AD+CD)=2,∴AB+BD-AC-1=2,∴AM+BM+BD-AC=3,∴BM+BD=3,设BD=x,则BM=3-x,在Rt△BDM中,由勾股定理,得,即,解得:,∴BD=.故答案为:.【题目点拨】本题考查了角平分线的性质、全等三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.18、【分析】连接AB,判断出是等边三角形,然后根据扇形及三角形的面积公式,即可求得阴影部分的面积为:.【题目详解】解:连接,∵,∴是等边三角形,∴S,,∴.故答案为:.【题目点拨】本题考察扇形中不规则图形面积的求解,掌握扇形的面积公式是解题的关键.三、解答题(共78分)19、【分析】根据平方根、立方根的定义列出方程组,即可求解.【题目详解】解:由题意可知①+②可得,【题目点拨】此题主要考查实数的性质,解题的关键是熟知平方根、立方根的定义.20、(1)AD=BE.(2)成立,见解析;(3)∠APE=60°.【分析】(1)直接写出答案即可.(2)证明△ECB≌△ACD即可.(3)由(2)得到∠CEB=∠CAD,此为解题的关键性结论,借助内角和定理即可解决问题.【题目详解】解:(1)∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为AD=BE.(2)AD=BE成立.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴BE=AD.(3))∠APE不随着∠ACB的大小发生变化,始终是60°.如图2,设BE与AC交于Q,由(2)可知△ECB≌△ACD,∴∠BEC=∠DAC又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.21、(1)(-4,4);(2);(3)【分析】(1)作DH⊥AB,先求出AB,根据菱形性质得AD=AB=8,再根据勾股定理求出AH,再求OH;(2)延长EF与x轴相交于G,作EP⊥AB,根据平行线性质证△ECF≌△GBF(AAS),得BG=EC=4,EF=FG,AG=AB+BG=12,EG=2EF,根据勾股定理得:(AE+EG)2-2AE∙EG=AG2,根据三角形面积公式得:所以(AE+EG)2-2×48=122;(3)作点B关于AC的对称点,作,交AC于点M,此时BM+MN最小,连接;根据矩形性质和轴对称性质得:AB=8,BC=,AC=,求得=,=AB=8,,设AN=x,则BN=8-x,由勾股定理可得:,可进一步求出.【题目详解】(1)作DH⊥AB因为,,所以AB=4-(-4)=8,因为四边形ABCD是菱形,所以AD=AB=8,因为四边形的面积为32,所以DH=32÷8=4所以根据勾股定理可得:AH=所以OH=AH-OA=-4所以点D的坐标是(-4,4)(2)延长EF与x轴相交于G,作EP⊥AB因为四边形ABCD是平行四边形,所以DC=AB=8,DC//AB所以∠C=∠CBG,∠CEF=∠BGF,因为E,F分别是CD,AB的中点,所以DE=CE=4,CF=BF,所以△ECF≌△GBF(AAS)所以BG=EC=4,EF=FG所以AG=AB+BG=12,EG=2EF,又因为AF⊥EF所以AE2+EG2=AG2所以(AE+EG)2-2AE∙EG=AG2由(1)知EP=DH=4所以根据三角形面积公式得:所以所以(AE+EG)2-2×48=122所以所以AE+2EF=(3)作点B关于AC的对称点,作,交AC于点M,此时BM+MN最小;连接.因为四边形ABCD是矩形,所以由已知可得:AB=8,BC=所以AC=所以在三角形ABC中,AC上的高是:因为AC是的对称轴,所以=,=AB=8,设AN=x,则BN=8-x,由勾股定理可得:解得x=,所以所以BM+MN=即BM+MN的最小值是.【题目点拨】考核知识点:矩形性质,勾股定理.根据已知条件构造直角三角形,利用勾股定理解决问题是关键.22、证明过程见解析【解题分析】试题分析:由可得,由,根据等量代换可得,从而,接下来,依据垂线的定义可得到AB和CD的位置关系.证明:在中,,∴,又∵,∴,∴,∴.点睛:本题主要就是依据三角形的内角和定理和垂线的定义求解的.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.23、(1)11,10,78,81;(2)90人;(3)八年级的总体水平较好【解题分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【题目详解】解:(1)由题意知,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,1,79,79,80,80,81,83,85,86,87,94,∴其中位数,八年级成绩的众数,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《空间交互设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《家具设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《影视改编与文化创意》2022-2023学年第一学期期末试卷
- 淮阴工学院《数据分析与挖掘》2023-2024学年期末试卷
- 淮阴师范学院《机器学习》2023-2024学年期末试卷
- DB1405-T 058-2024煤层气排采技术规范
- 文书模板-《电气线路装调实训报告总结》
- 五年级写人的作文450字【六篇】
- 制糖行业销售渠道整合策略考核试卷
- 建筑机电安装工人安全知识手册考核试卷
- 安装培训方案
- 2023边缘物联代理技术要求
- 普宁市北部中心水厂榕江取水工程环境影响报告书
- 不良资产项目律师法律尽调报告(模板)
- 接交车辆检查表-原版
- 剪辑师职业生涯规划与管理
- 水稻栽培技术-水稻常规栽培技术
- 四风整改台账清单
- 标准报价单模板(二)
- 【期中】第1-4单元易错题专项攻略-数学四年级上册苏教版(含答案)
- 《mc入门教程》课件
评论
0/150
提交评论