版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章6.2向量基本定理与向量的坐标6.2.1向量基本定理A级必备知识基础练1.[探究点一]已知e1,e2是不共线的非零向量,则以下向量可以组成基底的是()A.a=0,b=e1+e2B.a=3e1+3e2,b=e1+e2C.a=e1-2e2,b=e1+e2D.a=e1-2e2,b=2e1-4e22.[探究点二]在△ABC中,点D在边AB上,BD=2DA.记CA=m,CD=n,则CB=()A.3m-2n B.-2m+3nC.3m+2n D.2m+3n3.[探究点二](多选题)如图,在四边形ABCD中,AB∥CD,AB⊥AD,AB=2AD=2DC,E为BC边上一点,且BC=3EC,F为AE的中点,则()A.BC=-1B.AFC.BF=-2D.CF4.[探究点二]如图,在平行四边形ABCD中,E为BC的中点,F为DE的中点.若AF=mAB+nAD,则mn=5.[探究点三]如图,在△ABC中,AD=13DC,P是线段BD上一点.若AP=mAB+16.[探究点二]设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1=,λ2=7.[探究点一、二、三]已知在△OAB中,点D在线段OB上,且OD=2DB,延长BA到C,使BA=AC.设OA=a,OB=b.(1)用a,b表示向量OC,(2)若向量OC与OA+kDC共线,求实数kB级关键能力提升练8.已知a,b为非零不共线向量,向量8a-kb与-ka+b共线,则k=()A.22 B.-22 C.±22 D.89.[2023广东韶关高一]在△ABC中,AN=23NC,P是BN上一点,若AP=tAB+14ACA.23 B.25 C.110.(多选题)如图所示,四边形ABCD为梯形,其中AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.AC=ADC.MN=AD11.如图,A,B,C,D为平面内的四个点,BC=AB+AD,E为线段BC的中点,若DE=λDA+μDC,则λ+12.[2023湖北襄阳高一]如图所示,在△ABC中,F为BC边上一点,2BF=FC,AB=a,(1)用向量a,b表示AF;(2)若3AB=BD,连接DF并延长,交AC于点E,DFDE=λ,AEAC=μ,求λC级学科素养创新练13.如图所示,在▱ABCD中,AD,DC边的中点分别为E,F,连接BE,BF,与AC分别交于点R,T.求证:AR=RT=TC.参考答案6.2向量基本定理与向量的坐标6.2.1向量基本定理1.C对于A,零向量与任意向量均共线,所以此两个向量不可以组成基底;对于B,因为a=3e1+3e2,b=e1+e2,所以a=3b,所以此两个向量不可以组成基底;对于C,设a=λb,即e1-2e2=λ(e1+e2),则1=λ,-2=λ,无解,所以此两个向量不共线,可以组成一组基底;对于D,因为a=e1-2e2,b=2e1-4e2,所以a=122.B因为点D在边AB上,BD=2DA,所以BD=2DA,即CD-CB=2(所以CB=3CD-2CA=3n-2m=-2m+3n.故选B.3.ABC∵AB∥CD,AB⊥AD,AB=2AD=2DC,∴BC=BA+AD+DC=-∵BC=3EC,∴BE=23∴AE=AB+BE=AB+-13AB+BF=BA+AF=-AB+CF=CB+BF=BF-4.23AF=∵AF=mAB+nAD,∴m=12,n=34,∴5.13设BP=λBD(λ∈R),∵AD=13∴AP=AB+BP=AB+λBD=AB+λ(BA∵AP=mAB+16AC,6.-1623由题意知,D为AB∴AE-AB=2∴DE=AE-12AB=13AB+23AC7.解(1)∵A为BC的中点,∴OA=∴OC=2OA-OB=2a-∴DC=OC-OD=OC-(2)由(1)得OA+kDC=(2k+1)a-53kb∵OC与OA+kDC共线,设OC=λ(OA+kDC),λ∈即2a-b=λ(2k+1)a+-53根据平面向量基本定理,得2=解得k=348.C∵向量8a-kb与-ka+b共线,∴存在实数λ,使得8a-kb=λ(-ka+b),即8a-kb=-kλa+λb.又a,b为非零不共线向量,∴8=-kλ,-k=λ,9.DNC=AC-AN所以AN=25AC所以AP=tAB+14因为P,B,N三点共线,所以t+58=解得t=38故选D.10.ABDAC=AD+DC=MC=MA+AC=12BAMN=MA+AD+DN=-BC=BA+AD+DC=-故选ABD.11.54因为BC=AB+AD,即AC又E为线段BC的中点,所以DE=12DC+12DB=12DC+12(DA+AB)12.解(1)因为2BF=所以2(AF-AB)=AC-AF,即3AF所以AF=23AB+(2)若DFDE=λ,AEAC=μ,则AE=μAC,DF所以AF-AD=λ(AF=(1-λ)AD+λAE=4(1-λ)AB+λμAC=4(1-λ)a+λμb.由于AF=23a+所以4(1-λ)=23,λμ=13,解得λ=56,μ13.证明设AB=a,AD=b,AR=r,AT=t,则AC=a+b.因为AR与AC共线,所以存在实数n,使得r=n(a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校教学楼供暖改造合同
- 商业展示器材租赁合约
- 桥梁防水补漏工程协议
- 玻璃制造工厂房屋租赁合同
- 大型办公区广告屏租赁合约
- 设备维修保养协作协作总结协议
- 保险行业技术研发经理招聘协议
- 建筑工程招投标合同计划表
- 优化流程利器模具管理办法
- 喀什招投标项目现场管理
- 频谱仪N9020A常用功能使用指南
- 天津高考英语词汇3500
- 木本园林植物栽培技术
- 抛石护脚施工方案
- 英文技术写作-东南大学中国大学mooc课后章节答案期末考试题库2023年
- 模拟电子技术课程设计-BS208HAF调频调幅两波段收音机组装与调试
- 精装修投标技术标书模板
- 中华传统文化之文学瑰宝学习通课后章节答案期末考试题库2023年
- 高压配电室的安全操作规程
- 生产制造一体化管理解决方案培训资料
- 禹州神火宽发矿业有限公司煤矿矿山地质环境保护与土地复垦方案
评论
0/150
提交评论