河南省商丘市柘城县2024届八上数学期末监测模拟试题含解析_第1页
河南省商丘市柘城县2024届八上数学期末监测模拟试题含解析_第2页
河南省商丘市柘城县2024届八上数学期末监测模拟试题含解析_第3页
河南省商丘市柘城县2024届八上数学期末监测模拟试题含解析_第4页
河南省商丘市柘城县2024届八上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商丘市柘城县2024届八上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形是轴对称图形的是()A. B. C. D.2.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分 B.中位数 C.方差 D.平均数3.下列因式分解正确的是()A.x2–9=(x+9)(x–9) B.9x2–4y2=(9x+4y)(9x–4y)C.x2–x+=(x−)2 D.–x2–4xy–4y2=–(x+2y)24.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣15.下列多项式①x²+xy-y²②-x²+2xy-y²③xy+x²+y²④1-x+x其中能用完全平方公式分解因式的是(

)A.①② B.①③ C.①④ D.②④6.如图,已知AB=AC,AD⊥BC,AE=AF,图中共有()对全等三角形.A.5 B.6 C.7 D.87.下列式子中,属于最简二次根式的是()A. B. C. D.8.如图,正方形ABCD中,AB=1,则AC的长是()A.1 B. C. D.29.有一张三角形纸片ABC,已知∠B=∠C=α,按下列方案用剪刀沿着箭头方向剪开,所剪下的三角形纸片不一定是全等图形的是()A. B.C. D.10.若点A(n,2)在y轴上,则点B(2n-1,3n+1)位于()A.第四象限. B.第三象限 C.第二象限 D.第一象限11.,是两个连续整数,若,则()A.7 B.9 C.16 D.1112.已知如图,平分,于点,点是射线上的一个动点,若,,则的最小值是()A.2 B.3 C.4 D.不能确定二、填空题(每题4分,共24分)13.阅读材料后解决问题,小明遇到下面一个问题:计算.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用方差公式解决问题,具体解法如下:请你根据小明解决问题的方法,试着解决以下的问题:__________.14.当时,分式无意义,则_________.15.如图,等腰直角三角形ABC中,AB=4cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.16.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).17.一次函数与的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是______.18.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.三、解答题(共78分)19.(8分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:(1)容器内原有水多少?(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②20.(8分)已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.21.(8分)如图,在中,点是边的中点,,,.求证:.22.(10分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.23.(10分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.24.(10分)先化简代数式,再从中选一个恰当的整数作为的值代入求值.25.(12分)(1)解方程:;(2)列分式方程解应用题:用电脑程序控制小型赛车进行比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛.比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差.从赛后数据得知两车的平均速度相差.求“畅想号”的平均速度.26.老陶手机店销售型和型两种型号的手机,销售一台型手机可获利元,销售一台型手机可获利元.手机店计划一次购进两种型号的手机共台,其中型手机的进货量不超过型手机的倍设购进型手机台,这台手机的销售总利润为元.(1)求与的关系式.(2)该手机店购进型、型手机各多少台,才能使销售利润最大.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.2、B【解题分析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.考点:统计量的选择.3、D【分析】利用以及进行因式分解判断即可.【题目详解】A.原式=(x+3)(x–3),选项错误;B.原式=(3x+2y)(3x–2y),选项错误;C.原式=(x–)2,选项错误;D.原式=–(x2+4xy+4y2)=–(x+2y)2,选项正确.故选D.【题目点拨】本题主要考查了因式分解,熟练掌握相关公式是解题关键.4、B【题目详解】0.056用科学记数法表示为:0.056=,故选B.5、D【解题分析】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.故选D.6、C【分析】本题主要考查两个三角形全等的条件:两边夹一角(SAS),两角夹一边(ASA),两角对一边(AAS),三条边(SSS),HL.【题目详解】7对.理由:根据全等三角形判定可知:△ABE≌△ACF;△ABD≌△ACD;△ABO≌△ACO;△AEO≌△AFO;△COE≌△BOF;△DCO≌△DBO;△BCE≌△CBF.故选C.【题目点拨】本题考查全等三角形的判定,学生们熟练掌握判定的方法即可.7、B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【题目详解】A.=,不是最简二次根式,故该选项不符合题意,B.是最简二次根式,故该选项符合题意,C.被开方数中含分母,不是最简二次根式,故该选项不符合题意,D.=,被开方数中含分母,不是最简二次根式,故该选项不符合题意,故选:B.【题目点拨】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8、B【分析】在直角三角形ABC中,利用勾股定理可直接求出AC的长;【题目详解】解:在Rt△ABC中,AB=BC=1,∴AC.故选:B.【题目点拨】本题考查了正方形的性质和勾股定理,属于基础题.正确的理解勾股定理是解决问题的关键.9、D【分析】根据全等三角形的判定定理进行判断即可.【题目详解】A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE=α+∠FEC,∠B=∠C=α,∴∠FEC=∠BDE,∵BD=CE=3是对应边,由AAS判定两个小三角形全等,故本选项不符合题意;D、如图2,∵∠DEC=∠B+∠BDE=α+∠FEC,∠B=∠C=α,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;故选D.【题目点拨】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.10、C【分析】由点在y轴的条件是横坐标为0,得出点A(n,2)的n=0,再代入求出点B的坐标及象限.【题目详解】∵点A(n,2)在y轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(2n﹣1,3n+1)在第二象限.故选:C.【题目点拨】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.11、A【分析】根据,可得,求出a=1.b=4,代入求出即可.【题目详解】解:∵,∴,∴a=1.b=4,∴a+b=7,故选A.【题目点拨】本题考查了二次根式的性质和估算无理数的大小,关键是确定的范围.12、A【分析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.【题目详解】解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,

∵OP平分∠MON,PA⊥ON,PQ⊥OM,

∴PA=PQ,

∵∠AOP=∠MON=30°,

∴PA=2,

∴PQ=2.

故选:A.【题目点拨】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置是解题的关键.二、填空题(每题4分,共24分)13、【分析】原式变形后,利用平方差公式计算即可求出值.【题目详解】解:根据题意得:,故答案为:【题目点拨】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14、-1【分析】根据分式无意义的条件是分母为零即可解答.【题目详解】解:∵当时,分式无意义,∴当时,分母为零,即,解得a=-1,故答案为:-1.【题目点拨】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.15、【解题分析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=AB,AE=AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=∠3,∵,∴△ACE∽△ABD,∴∠ACE=∠ABC=90°,∴点D从点B移动至点C的过程中,总有CE⊥AC,即点E运动的轨迹为过点C与AC垂直的线段,AB=AB=4,当点D运动到点C时,CE=AC=4,∴点E移动的路线长为4cm.16、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【题目详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【题目点拨】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.17、【解题分析】把代入,得,得出两直线的交点坐标为(1,2),从而得到方程组的解。【题目详解】解:把代入,得,则函数和的图象交于点,即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是故答案为:【题目点拨】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18、【解题分析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.【题目详解】作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OB′H为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣),故答案为(,﹣).【题目点拨】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.三、解答题(共78分)19、(1)0.3L;(2)在这种滴水状态下一天的滴水量为9.6L.【分析】(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【题目详解】(1)由图象可知,容器内原有水0.3L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6L.【题目点拨】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.20、【分析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1+y2,再把当x=2时,y1=4,y=2代入y关于x的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【题目详解】根据题意,设,.,,当时,,,,,,.【题目点拨】本题考查了正比例函数及反比例函数的定义及用待定系数法求函数的解析式的知识点,只要根据题意设出函数的关系式,把已知对应值代入即可.21、见解析【分析】在△ABD中根据勾股定理的逆定理得到∠ADB=90°,从而得到AD是BC的垂直平分线,根据垂直平分线上的点到线段两个端点的距离相等即可得到结论.【题目详解】∵点D是BC边的中点,BC=12,∴BD=1.∵AD=8,AB=10,∴在ABD中,,∴ABD是直角三角形,∠ADB=90°,∴AD⊥BC.∵点D是BC边的中点,∴AD是BC的垂直平分线,∴AB=AC.【题目点拨】本题考查了勾股定理的逆定理以及线段垂直平分线的性质.求出∠ADB=90°是解答本题的关键.22、(1)k=-2,b=8;(2)在图象上.【分析】(1)利用待定系数法即可得到k,b的值;(2)将点P的坐标代入函数解析式,如满足函数解析式则点在函数图象上,否则不在函数图象上.【题目详解】(1)把A(3,2),B(1,6)代入得:,解得:∴(2)当时,∴P(,10)在的图象上【题目点拨】本题考查了待定系数法求一次函数的解析式、函数图象上点的坐标与函数关系式的关系.利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.23、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论