版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山市第七中学2024届八上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70° B.80° C.90° D.100°2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠43.如图,在△ABC中,AB=AC=5,BC=6,点M为BC边中点,MN⊥AC于点N,那么MN等于(
)A. B. C. D.4.若分式的值为,则的值为A. B. C. D.5.下列命题是真命题的有()①若a2=b2,则a=b;②内错角相等,两直线平行.③若a,b是有理数,则|a+b|=|a|+|b|;④如果∠A=∠B,那么∠A与∠B是对顶角.A.1个 B.2个 C.3个 D.4个6.已知,则的值是()A. B. C.1 D.7.点P(3,)关于x轴对称的点的坐标是()A.(3,) B.(,) C.(3,4) D.(,4)8.如图,△ABC的面积是1cm2,AD垂直于∠ABC的平分线BD于点D,连接DC,则与△BDC面积相等的图形是()A. B. C. D.9.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D10.使分式的值等于0的x的值是()A.-1 B.-1或5 C.5 D.1或-5二、填空题(每小题3分,共24分)11.如图,在中,BD平分,于点F,于点E,若,则点D到边AB的距离为_____________.12.如图,在正方形网格中,△ABC的每一个顶点都在格点上,AB=5,点D是AB边上的动点(点D不与点A,B重合),将线段AD沿直线AC翻折后得到对应线段AD1,将线段BD沿直线BC翻折后得到对应线段BD2,连接D1D2,则四边形D1ABD2的面积的最小值是____.13.计算:|-2|=______.14.如图,∠1=120°,∠2=45°,若使b∥c,则可将直线b绕点A逆时针旋转_________度.15.已知,,则______.16.命题“如果互为相反数,那么”的逆命题为_________________.17.若关于x的分式方程的解为正数,则满足条件的非负整数k的值为____.18.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.三、解答题(共66分)19.(10分)(1)解方程:;(2)先化简,再从中选一个适合的整数代人求值.20.(6分)如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连结AD,作∠ADE=50°,DE交线段AC于点E.(1)若DC=2,求证:△ABD≌△DCE;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.21.(6分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有_______名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;(4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(8分)如图,在四边形ABCD中,∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△ACD是等腰三角形;(2)若AB=4,求CD的长.23.(8分)如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,∠A=60°.(1)求证:△ABC是等边三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.24.(8分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,这个函数的图象如图所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量.25.(10分)观察下列各式:=1+-=;=1+-=;=1+-=.(1)请你根据上面三个等式提供的信息,猜想:的值;(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式,并验证;(3)利用上述规律计算:.26.(10分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【题目详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°,故选:C.【题目点拨】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,掌握角平分线的定义是解题的关键.2、D【解题分析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.3、C【题目详解】连接AM,如图所示:∵AB=AC=5,点M为BC的中点,∴AM⊥CM,∴AM=,∵AM•MC=AC•MN,∴MN=;故选C.4、A【分析】根据分式值为0,分子为0,分母不为0,得出x+3=0,解方程即可得出答案.【题目详解】因为分式的值为,所以x+3=0,所以x=-3.故选A.【题目点拨】考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注:“分母不为零”这个条件不能少.5、D【解题分析】试题解析:①若a2=b2,则a=b;是假命题;②内错角相等,两直线平行.是真命题;③若a,b是有理数,则|a+b|=|a|+|b|;是假命题;④如果∠A=∠B,那么∠A与∠B是对顶角.是假命题;故选A.6、D【解题分析】令,得到:a=2k、b=3k、c=4k,然后代入即可求解.【题目详解】解:令得:a=2k、b=3k、c=4k,.故选D.【题目点拨】本题考查了比例的性质,解题的关键是用一个字母表示出a、b、c,然后求值.7、C【分析】根据点坐标关于x轴对称的变换规律即可得.【题目详解】点坐标关于x轴对称的变换规律:横坐标相同,纵坐标互为相反数,,点P关于x轴对称的点的坐标是,故选:C.【题目点拨】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于x轴对称的变换规律是解题关键.8、D【分析】利用等腰三角形“三线合一”的性质以及与三角形中线有关的面积计算,求得阴影面积为0.5,再计算各选项中图形的面积比较即可得出答案.【题目详解】延长AD交BC于E,∵BD是∠ABC平分线,且BD⊥AE,根据等腰三角形“三线合一”的性质得:AD=DE,∴,,∴,A、,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意;故选:D.【题目点拨】本题考查了等腰三角形的判定和性质,三角形中线有关的面积计算,熟知等腰三角形“三线合一”的性质是解题的关键.9、D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【题目详解】如图所示:原点可能是D点.故选D.【题目点拨】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.10、C【分析】分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】∵∴∴x1=5或x2=-1(舍去)故选C【题目点拨】此题考查解一元二次方程-因式分解法、分式的值为零的条件,解题关键在于使得分母≠1.二、填空题(每小题3分,共24分)11、5【分析】根据角平分线的性质定理,即可求解.【题目详解】∵在中,BD平分,于点F,于点E,∴DE=DF=5,∴点D到边AB的距离为5.故答案是:5【题目点拨】本题主要考查角平分线的性质定理,掌握角平分线的性质定理是解题的关键.12、1【分析】延长AC使CE=AC,先证明△BCE是等腰直角三角形,再根据折叠的性质解得S四边形ADCD1+S四边形BDCD2=1,再根据S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,可得要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,根据三角形面积公式即可求出四边形D1ABD2的面积的最小值.【题目详解】如图,延长AC使CE=AC,∵点A,C是格点,∴点E必是格点,∵CE2=12+22=1,BE2=12+22=1,BC2=12+32=10,∴CE2+BE2=BC2,CE=BE,∴△BCE是等腰直角三角形,∴∠BCE=41°,∴∠ACB=131°,由折叠知,∠DCD1=2∠ACD,∠DCD2=2∠BCD,∴∠DCD1+∠DCD2=2(∠ACD+∠BCD)=2∠ACB=270°,∴∠D1CD2=360°﹣(∠DCD1+DCD2)=90°,由折叠知,CD=CD1=CD2,∴△D1CD2是等腰直角三角形,由折叠知,△ACD≌△ACD1,△BCD≌△BCD2,∴S△ACD=S△ACD1,S△BCD=S△BCD2,∴S四边形ADCD1=2S△ACD,S四边形BDCD2=2S△BCD,∴S四边形ADCD1+S四边形BDCD2=2S△ACD+2S△BCD=2(S△ACD+S△BCD)=2S△ABC=1,∴S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,∴要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,∴S△D1CD2最小=CD1•CD2=CD2=,即:四边形D1ABD2的面积最小为1+=1.1,故答案为1.1.【题目点拨】本题考查了四边形面积的最值问题,掌握等腰直角三角形的性质、折叠的性质、三角形面积公式是解题的关键.13、0【分析】先化简绝对值,以及求立方根,然后相减即可.【题目详解】解:;故答案为0.【题目点拨】本题考查了立方根和绝对值的定义,解题的关键是正确进行化简.14、1【分析】先根据邻补角的定义得到(如下图)∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°-45°=1°.【题目详解】解:如图:∵∠1=120°,∴∠3=60°,
∵∠2=45°,∴当∠3=∠2=45°时,b∥c,∴直线b绕点A逆时针旋转60°-45°=1°.故答案为:1.【题目点拨】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.15、1【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【题目详解】解:∵,,
∴原式,故答案为:1.【题目点拨】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16、如果,那么互为相反数【分析】把原命题的条件作为逆命题的结论,把原命题的结论作为逆命题的条件,即可.【题目详解】“如果互为相反数,那么”的逆命题为:“如果,那么互为相反数”.故答案是:如果,那么互为相反数.【题目点拨】本题主要考查逆命题的定义,掌握逆命题与原命题的关系,是解题的关键.17、1.【分析】首先解分式方程,然后根据方程的解为正数,可得x>1,据此求出满足条件的非负整数K的值为多少即可.【题目详解】∵,∴.∵x>1,∴,∴,∴满足条件的非负整数的值为1、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;∴满足条件的非负整数的值为1.故答案为:1.【题目点拨】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于1的值,不是原分式方程的解.18、【分析】由数轴先判断出被覆盖的无理数的范围,再确定出,,–的范围即可得出结论.【题目详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴–2<–<–1,∴被墨迹覆盖住的无理数是,故答案为.【题目点拨】此题主要实数与数轴,算术平方根的范围,确定出,,–的范围是解本题的关键.三、解答题(共66分)19、(1)原方程无解;(2),.【分析】(1)先去分母,再解整式方程,再验根;(2)根据分式运算法则先化简,再代入已知条件中的值计算.【题目详解】解:方程两边同时乘以,得.解得检验:当时,,所以,不是原方程的解,原方程无解.解:当时,原式【题目点拨】考核知识点:分式化简求值.掌握分式运算法则是关键.20、(1)证明见解析;(2)可以,115°或100°.【分析】(1)利用公共角求得∠ADB=∠DEC,DC=AB,∠B=∠C,所以利用AAS,证明△ABD≌△DCE.(2)可以令△ADE是等腰三角形,需要分类讨论:(1)中是一种类型,EA=ED也是一种类型,可分别求出∠BDA度数.【题目详解】证明:(1)∵AB=AC=2,DC=2,∴AB=DC,∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠CDE=130°,∠CED+∠CDE=130°,∴∠BDA=∠CED,∴△ABD≌△DCE(AAS).(2)解:可以.有以下三种可能:①由(1)得:△ABD≌△DCE,得AD=DE.则有∠DAE=∠DEA=65°∴∠BDA=∠CED=65°+50°=115°;②由(1)得∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合)∴;③当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°.21、(1)100(2)见解析(3)(4)1200【解题分析】(1)本次被抽取的学生共(名);(2)(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:(名).【题目详解】解:(1)本次被抽取的学生共(名),故答案为;(2)(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角,故答案为;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共名.【题目点拨】本题主要考查条形图的有关知识,这是中考的热点问题,也是必考点.22、(4)详见解析;(4)4.【解题分析】试题分析:(4)先根据条件证明△ABC≌△CED就可以得出∠CDE=∠ACB=40°,再计算出∠DCF=40°,这样就可以得出结论;(4)根据AB=4就可以求出AC的值,就可以求出CD.试题解析:(4)∵DE∥AB,∴∠DEC=∠B.在△ABC和△CED中,∴△ABC≌△CED(ASA)∴∠CDE=∠ACB=40°,∴∠DCE=40°,∴∠DCF=∠DCE-∠ACB=40°,∴∠DCF=∠CDF,∴△FCD是等腰三角形;(4)∵∠B=90°,∠ACB=40°,∴AC=4AB.∵AB=4,∴AC=4,∴CD=4.答:CD=4.考点:4.全等三角形的判定与性质;4.等腰三角形的判定;4.勾股定理.23、(1)见解析;(2)点O在∠BAC的平分线上,理由见解析.【解题分析】(1)由OB=OC,得∠OBC=∠OCB.再证∠BEC=∠CDB=90°由(AAS)可证△BCE≌△CBD,则∠DBC=∠ECB,所以,含有60°的等腰三角形是等边三角形;(2)由(1△BCE≌△CBD,得,EB=CD.又OB=OC,所以OE=OD,再由角平分线性质定理可证得.【题目详解】(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE⊥AC,CD⊥AB,∴∠BEC=∠CDB=90°.又∵BC=BC,∴△BCE≌△CBD(AAS),∴∠DBC=∠ECB,∴AB=AC.又∵∠A=60°,∴△ABC是等边三角形.(2)解:点O在∠BAC的平分线上.理由如下:连接AO.由(1)可知△BCE≌△CBD,∴EB=CD.∵OB=OC,∴OE=OD.又∵OE⊥AC,OD⊥AB,∴点O在∠BAC的平分线上.【题目点拨】本题考核知识点等边三角形判定,角平分线.解题关键点:证三角形全等得到对应边相等,从而得到等腰三角形,再证三角形是等边三角形;利用角平分线的性质定理推出必要条件.24、(1)(2)【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【题目详解】解:(1)设y与x的函数表达式为y=kx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妇产科剖宫产护理问题
- 中国缓控释肥(缓-控释肥)行业市场规模测算逻辑模型 头豹词条报告系列
- 数字产业创新研究中心:2024中国研究报告
- 大班健康活动教案:我会旋转
- 肺病的养护与治疗
- 5的乘法口诀(教案)2023-2024学年数学 二年级上册
- 自理能力打卡活动主题
- 急性酒精中毒病人的护理
- 肺部重度感染护理查房
- 艾滋病的并发症
- 私募基金纠纷案件裁判指引
- 阴道流血症状护理
- 新疆维吾尔自治区2023年7月普通高中学业水平考试数学试卷
- 园林植物器官的识别-园林植物生殖器官的识别
- 炼钢厂安全生产教育培训课件
- 拼音四线三格A4打印版
- 机械专业职业生涯发展报告
- 生物技术为精准医疗注入新动力
- MBD数字化设计制造技术
- 部编版道德与法治五年级上册中华民族一家亲第一课时课件
- 2024年金融科技行业的数字化金融培训
评论
0/150
提交评论