2022年辽宁省大连市瓦房店第十七初级中学高二数学理上学期期末试卷含解析_第1页
2022年辽宁省大连市瓦房店第十七初级中学高二数学理上学期期末试卷含解析_第2页
2022年辽宁省大连市瓦房店第十七初级中学高二数学理上学期期末试卷含解析_第3页
2022年辽宁省大连市瓦房店第十七初级中学高二数学理上学期期末试卷含解析_第4页
2022年辽宁省大连市瓦房店第十七初级中学高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年辽宁省大连市瓦房店第十七初级中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2参考答案: A【考点】利用导数研究曲线上某点切线方程.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选A.2.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PB=1,PD=3,则的值为()A.3B.C.D.参考答案:B3.若(x+)n展开式的二项式系数之和为64,则n为() A.4 B. 5 C. 6 D. 7参考答案:C略4.双曲线的离心率e=()A. B. C.3 D.参考答案:A【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程可得a、b的值,计算可得c的值,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,双曲线的方程为:,则a=,b=,即c2=3+6=9,即c=3,则其离心率e==;故选:A.5.下列说法中正确的有(

)A.一组数据的平均数一定大于这组数据中的每个数据B.一组数据不可能有两个众数C.一组数据的中位数一定是这组数据中的某个数据D.一组数据的方差越大,说明这组数据的波动越大参考答案:D一组数据的平均数介于这组数据中的最大数据与最小数据之间,所以A错;众数是一组数据中出现最多的数据,所以可以不止一个,B错;若一组数据的个数有偶数个,则其中中位数是中间两个数的平均值,所以不一定是这组数据中的某个数据,C错;一组数据的方差越大,说明这组数据的波动越大,D对.6.已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值()A.恒大于0

B.恒小于0

C.可能等于0

D.可正可负参考答案:B略7.凸n边形有f(n)条对角线,则凸n+1边形有对角线条数f(n+1)为()A.f(n)+n+1 B.f(n)+n C.f(n)+n﹣1 D.f(n)+n﹣2参考答案:C【考点】81:数列的概念及简单表示法.【分析】凸n边形变成凸n+1边形首先是增加一条边和一个顶点,原先的一条边就成了对角线了,则增加上的顶点连接n﹣2条对角线,则n﹣2+1=n﹣1即为增加的对角线,所以凸n+1边形有对角线条数f(n+1)为凸n边形的对角线加上增加的即f(n+1)=f(n)+n﹣1.【解答】解:由n边形到n+1边形,增加的对角线是增加的一个顶点与原n﹣2个顶点连成的n﹣2条对角线,及原先的一条边成了对角线.故答案为C.【点评】考查学生的逻辑推理的能力,对数列的概念及简单表示法的理解.8.通过来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为

A.回归分析

B.独立性检验分析

C.散点图分析

D.残差分析参考答案:D略9.数列1,2,4,8,16,32,…的一个通项公式是(

)A.an=2n﹣1 B.an=2n﹣1 C.an=2n D.an=2n+1参考答案:B【考点】等比数列的通项公式.【专题】计算题.【分析】观察此数列是首项是1,且是公比为2的等比数列,根据等比数列的通项公式求出此数列的一个通项公式.【解答】解:由于数列1,2,4,8,16,32,…的第一项是1,且是公比为2的等比数列,故通项公式是an=1×qn﹣1=2n﹣1,故此数列的一个通项公式an=2n﹣1,故选B.【点评】本题主要考查求等比数列的通项公式,求出公比q=2是解题的关键,属于基础题.10.设定义在(a,b)上的可导函数f(x)的导函数y=f′(x)的图象如图所示,则f(x)的极值点的个数为()A.1 B.2 C.3 D.4参考答案:C【考点】6C:函数在某点取得极值的条件.【分析】导数的正负与函数单调性的关系是:导数小于0则函数是减函数,导数大于0则函数是增函数,进而可以分析出正确答案.【解答】解:根据导数与函数单调性的关系可得函数f(x)在区间(a,b)上的单调性为:增,减,增,减,结合函数的单调性可得函数有3个极值点.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲线上一点,过双曲线中心的直线交双曲线于两点,记直线的斜率分别为,当最小时,双曲线的离心率为_______参考答案:12.已知F1、F2为椭圆的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=

.参考答案:813.不等式,的解集是_____________.参考答案:14.在的二项展开式中,常数项等于

.参考答案:略15.某几何体的三视图如下图所示,则这个几何体的体积为_______________.参考答案:16.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为_________人.参考答案:1517.已知=2,=3,=4,…,若=7,(a、b均为正实数),则类比以上等式,可推测a、b的值,进而可得a+b=

.参考答案:55【考点】类比推理.【分析】观察所给的等式,照此规律,第7个等式中:a=7,b=72﹣1=48,即可写出结果.【解答】解:观察下列等式=2,=3,=4,…,照此规律,第7个等式中:a=7,b=72﹣1=48,∴a+b=55,故答案为:55三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某工厂生产某种产品,已知该产品的月产量与每吨产品的价格P(元)之间的关系为,且生产吨的成本为。问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入—成本)参考答案:略19.已知其中是常数,计算参考答案:解析:设,令,得

令,得20.在如图所示的圆锥中,OP是圆锥的高,AB是底面圆的直径,点C是弧AB的中点,E是线段AC的中点,D是线段PB的中点,且PO=2,OB=1.(1)试在PB上确定一点F,使得EF∥面COD,并说明理由;(2)求点A到面COD的距离.参考答案:【考点】点、线、面间的距离计算;棱柱、棱锥、棱台的体积.【分析】(1)连接BE,设BE∩OC=G,由题意G为△ABC的重心,可得=2,连接DG,利用EF∥平面COD,可得EF∥DG,进而得出F点的位置.(2)由PO⊥平面ABC,可得OC⊥PO,利用线面面面垂直的判定与性质定理可得OC⊥平面POB.OC⊥OD.利用VA﹣OCD=VD﹣AOC,即可得出.【解答】解:(1)连接BE,设BE∩OC=G,由题意G为△ABC的重心,∴=2,连接DG,∵EF∥平面COD,EF?平面BEF,平面BEF∩平面COD=DG,∴EF∥DG,∴==2,又BD=DP,∴DF=PF=PB.∴点F是PB上靠近点P的四等分点.(2)由PO⊥平面ABC,OC?平面ABC,∴OC⊥PO,又点C是弧AB的中点,OC⊥AB,∴OC⊥平面POB.OD?平面POB,∴OC⊥OD.S△COD=OC?OD==.∵VA﹣OCD=VD﹣AOC,∴?S△COD?d=?PO,∴d=,∴点A到面COD的距离.【点评】本题考查了空间位置关系、空间距离、线面面面平行与垂直的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.21.(本小题满分12分)如图,在平面四边形ABCD中,,,AC=.(Ⅰ)求的值;(Ⅱ)若-,,求的长.参考答案:22.如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,若在线段PD上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只有一个点E使得BE⊥CE时,二面角E﹣BC﹣A正切值的大小. 参考答案:【考点】二面角的平面角及求法. 【专题】计算题;证明题;空间角. 【分析】根据题意,以BC为直径的球与线段PD有交点,因此设BC的中点为O(即球心),取AD的中点M,连接OM,作ME⊥PD于点E,连接OE.要使以BC为直径的球与PD有交点,只要OE≤OC即可,设OC=OB=R,算出ME=,从而得到OE2=9+≤R2,解此不等式得R≥2,所以AD的取值范围[4,+∞).最后根据AD=4时,点E在线段PD上惟一存在,结合二面角平面角的定义和题中数据,易得此时二面角E﹣BC﹣A正切值. 【解答】解:若以BC为直径的球面与线段PD有交点E,由于点E与BC确定的平面与球的截面是一个大圆,则必有BE⊥CE,因此问题转化为以BC为直径的球与线段PD有交点. 设BC的中点为O(即球心),再取AD的中点M, ∵AB⊥AD,AB⊥AP,AP∩AD=A,∴AB⊥平面PAD, ∵矩形ABCD中,O、M是对边中点的连线 ∴OM∥AB,可得OM⊥平面PAD, 作ME⊥PD交PD于点E,连接OE, 则OE⊥PD,所以OE即为点O到直线PD的距离, 又∵OD>OC,OP>OA>OB,点P,D在球O外, ∴要使以BC为直径的球与线段PD有交点,只要使OE≤OC(设OC=OB=R)即可. 由于△DEM∽△DAP,可求得ME=, ∴OE2=9+ME2=9+ 令OE2≤R2,即9+≤R2,解之得R≥2; ∴AD=2R≥4,得AD的取值范围[4,+∞), 当且仅当AD=4时,点E在线段PD上惟一存在, 此时作EH∥PA交AD于H,再作HK⊥BC于K,连接EK, 可得BC⊥平面EHK,∠EKH即为二面角E﹣BC﹣A的平面角 ∵以B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论