2024届浙江省余姚八中高一上数学期末学业水平测试试题含解析_第1页
2024届浙江省余姚八中高一上数学期末学业水平测试试题含解析_第2页
2024届浙江省余姚八中高一上数学期末学业水平测试试题含解析_第3页
2024届浙江省余姚八中高一上数学期末学业水平测试试题含解析_第4页
2024届浙江省余姚八中高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省余姚八中高一上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知、、是的三个内角,若,则是A.钝角三角形 B.锐角三角形C.直角三角形 D.任意三角形2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.3.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.4.在的图象大致为()A. B.C. D.5.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.6.函数的定义域为()A.R B.C. D.7.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则()A.k≥4 B.k>4C.k≥8 D.k>88.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A. B.6C. D.79.已知集合,则=A. B.C. D.10.已知直线,若,则的值为()A.8 B.2C. D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则此函数的解析式为______12.若实数x,y满足,则的最小值为___________13.若函数在区间[2,3]上的最大值比最小值大,则__________.14.A是锐二面角α-l-β的α内一点,AB⊥β于点B,AB=,A到l的距离为2,则二面角α-l-β的平面角大小为________.15.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)16.已知函数,若,不等式恒成立,则的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第次改良后所排放的废气中的污染物数量,可由函数模型给出,其中是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)18.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号的电动汽车在一段国道上进行测试,汽车行驶速度低于80km/h.经多次测试得到该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的数据如下表所示:为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,且,,()(1)当时,请选出你认为最符合表格中所列数据的函数模型,并说明理由;(2)求出(1)中所选函数模型的函数解析式;(3)根据(2)中所得函数解析式,求解如下问题:现有一辆同型号电动汽车从地驶到地,前一段是200km的国道,后一段是60km的高速路(汽车行驶速度不低于80km/h),若高速路上该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的关系满足,则如何行使才能使得总耗电量最少,最少为多少?19.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?20.完成下列两个小题(1)角为第三象限的角,若,求的值;(2)已知角为第四象限角,且满足,则的值21.袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出两球颜色不同的概率;(3)求取出两个球中至多一个黑球的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】依题意,可知B,C中有一角为钝角,从而可得答案详解】∵A是△ABC的一个内角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角为钝角,故△ABC为钝角三角形故选A【题目点拨】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题2、C【解题分析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.3、C【解题分析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程4、C【解题分析】先由函数为奇函数可排除A,再通过特殊值排除B、D即可.【题目详解】由,所以为奇函数,故排除选项A.又,则排除选项B,D故选:C5、D【解题分析】直接利用函数图象的与平移变换求出函数图象对应解析式【题目详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.6、B【解题分析】要使函数有意义,则需要满足即可.【题目详解】要使函数有意义,则需要满足所以的定义域为,故选:B7、D【解题分析】首先确定集合A,由此得到log2k>3,即可求k的取值范围.【题目详解】∵集合A={x∈N|1<x<log2k},集合A中至少有2个元素,∴A={2,3},则log2k>3,可得k>8.故选:D.8、D【解题分析】先求出,再求出即得解.【题目详解】由已知,函数与函数互为反函数,则由题设,当时,,则因为为奇函数,所以.故选:D9、B【解题分析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.10、D【解题分析】根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】设出幂函数,代入点即可求解.【题目详解】由题意,设,代入点得,解得,则.故答案为:.12、【解题分析】由对数的运算性质可求出的值,再由基本不等式计算即可得答案【题目详解】由题意,得:,则(当且仅当时,取等号)故答案为:13、【解题分析】函数在上单调递增,∴解得:故答案为14、【解题分析】如图,过点B作与,连,则有平面,从而得,所以即为二面角的平面角在中,,所以,所以锐角即二面角的平面角的大小为答案:点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通过解三角形的方法求得角,解题时要注意所求角的范围15、(1)(3)【解题分析】根据二分法所求零点的特点,结合图象可确定结果.【题目详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)16、【解题分析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【题目详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【解题分析】(1)由题设可得方程,求出,进而写出函数模型;(2)由(1)所得模型,结合题设,并应用对数的运算性质求解不等式,即可知要使该企业所排放的废气中含有的污染物数量达标至少要改良的次数.【题目详解】(1)由题意得:,,∴当时,,即,解得,∴,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意得,,整理得:,即,两边同时取常用对数,得:,整理得:,将代入,得,又,∴,综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.18、(1),理由见解析(2)(3)当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为【解题分析】(1)由表格数据判断合适的函数关系,(2)代入数据列方程组求解,(3)分别表示在国道与高速路上的耗电量,由单调性求其取最小值时的速度.【小问1详解】若选,则当时,该函数无意义,不合题意若选,显然该函数是减函数,这与矛看,不合题意故选择【小问2详解】选择,由表中数据得,解得,所以当时,【小问3详解】由题可知该汽车在国道路段所用时间为,所耗电量,所以当时,该汽车在高速路段所用时间为,所耗电量,易知在上单调递增,所以故当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为19、(1);(2)上述设计方案是不会超出班级预算【解题分析】(1)过点O作,垂足为H,用表示出OH和PH,从而可得铜条长度和正方形的面积,进而得出函数式;(2)利用同角三角函数的关系和二次函数的性质求出预算的最大值即可得出结论【题目详解】(1)过点O作,垂足为H,则,,正方形ABCD的中心在展板圆心,铜条长为相等,每根铜条长,,展板所需总费用为(2),当时等号成立.上述设计方案是不会超出班级预算【题目点拨】本题考查了函数应用,三角函数恒等变换与求值,属于中档题20、(1);(2).【解题分析】(1)根据同角的基本关系和角在第三象限,即可求出结果.(2)对两边平方,以及,可得,再根据角为第四象限角,,可得,再由,即可求出结果.【小问1详解】解:因为,所以,即,又,所以,所以.又角为第三象限的角,所以;【小问2详解】解:因为,所以,所以,即又角为第四象限角,,所以,所以所以.21、(1)答案见解析;(2);(3).【解题分析】(1)将1个红球记为个白球记为个黑球记为,进而列举出所有可能性,进而得到样本空间;(2)由题意,有1红1白,1红1黑,1白1黑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论