重庆育才中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第1页
重庆育才中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第2页
重庆育才中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第3页
重庆育才中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第4页
重庆育才中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆育才中学2024届高一数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.2.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.3.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④4.下图是一几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,分别为的中点.在此几何体中,下列结论中错误的为A.直线与直线共面 B.直线与直线是异面直线C.平面平面 D.面与面的交线与平行5.设函数与的图象的交点为,,则所在的区间是A. B.C. D.6.学校操场上的铅球投郑落球区是一个半径为米的扇形,并且沿着扇形的弧是长度为约米的防护栏,则扇形弧所对的圆心角的大小约为()A. B.C. D.7.已知,都为单位向量,且,夹角的余弦值是,则A. B.C. D.8.已知,则的最小值为()A. B.2C. D.49.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限10.函数的部分图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.12.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】13.函数的部分图象如图所示.若,且,则_____________14.函数(且)的定义域为__________15.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____16.若,,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:级别大小(克)频数频率一级果50.05二级果三级果35四级果30五级果20合计100请根据频率分布表中所提供的数据,解得下列问题:(1)求的值,并完成频率分布直方图;(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;(3)若将水果作分级销售,预计销售的价格元/个与每个水果的大小克关系是:,则预计10000个水果可收入多少元?18.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且AD=2PD=2(1)求证:MN∥平面PCD;(2)求证:平面PAC⊥平面PBD;(3)求四棱锥P-ABCD的体积19.已知且满足不等式.(1)求不等式;(2)若函数在区间有最小值为,求实数值20.如图,在等腰梯形中,,(1)若与共线,求k的值;(2)若P为边上的动点,求的最大值21.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)2、B【解题分析】根据三视图画出原图,从而计算出最长的棱长.【题目详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B3、A【解题分析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【题目详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【题目点拨】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.4、C【解题分析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确故答案选C5、A【解题分析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A6、A【解题分析】直接由弧长半径圆心角的公式求解即可.【题目详解】根据条件得:扇形半径为10,弧长为6,所以圆心角为:.故选:A.7、D【解题分析】利用,结合数量积的定义可求得的平方的值,再开方即可【题目详解】依题意,,故选D【题目点拨】本题考查了平面向量数量积的性质及其运算,属基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.8、C【解题分析】根据给定条件利用均值不等式直接计算作答.【题目详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C9、C【解题分析】化,可知角的终边所在的象限.【题目详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【题目点拨】本题主要考查了象限角的概念,属于容易题.10、C【解题分析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【题目详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解题分析】由题意,只需找一个奇函数,0不在定义域中即可.【题目详解】由题意,为奇函数且,则满足题意故答案为:12、【解题分析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【题目详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【题目点拨】本题考查了空间中点的坐标与应用问题,是基础题13、##【解题分析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【题目详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.14、【解题分析】根据对数的性质有,即可求函数的定义域.【题目详解】由题设,,可得,即函数的定义域为.故答案为:15、【解题分析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【题目详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【题目点拨】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.16、【解题分析】利用基本不等式求出即可.【题目详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【题目点拨】本题考查了基本不等式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的值为10,的值为0.35;作图见解析(2)(3)元【解题分析】(1)根据样本总数为可求,由频数样本总数可求;计算出各组频率,再计算出频率/组距即可画出频率分布直方图.(2)根据分层抽样可得抽取的4级有个,抽取5级果有个,设三个四级果分别记作:,二个五级果分别记作:,利用古典概型的概率计算公式即可求解.(3)计算出100个水果的收入即可预计10000个水果可收入.【题目详解】(1)的值为10,的值为0.35(2)四级果有30个,五级果有20个,按分层抽样的方法抽取5个水果,则抽取的4级果有个,5级果有个.设三个四级果分别记作:,二个五级果分别记作:,从中任选二个作为展品的所有可能结果是,共有10种,其中两个展品中仅有一个是四级果的事件为,包含共个,所求的概率为.(3)100个水果的收入为(元)所以10000个水果预计可收入(元).【题目点拨】本题考查了频率分布表、频率分布直方图、分层抽样以及古典概型的概率公式,用样本估计总体,属于基础题.18、(1)见解析(2)见解析(3)【解题分析】(1)先证明平面MEN∥平面PCD,再由面面平行的性质证明MN∥平面PCD;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PBD;(3)利用锥体的体积公式计算即可【题目详解】(1)证明:取AD的中点E,连接ME、NE,∵M、N是PA、BC的中点,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN⊂平面MNE,∴MN∥平面PCD;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱锥P-ABCD的高,且PD=1,∴正方形ABCD的面积为S=4,∴四棱锥P-ABCD的体积为VP-ABCD=×S四边形ABCD×PD=×4×1=【题目点拨】本题考查了空间中的平行与垂直关系的应用问题,也考查了锥体体积计算问题,是中档题19、(1);(2).【解题分析】(1)运用指数不等式的解法,可得的范围,再由对数不等式的解法,可得解集;(2)由题意可得函数在递减,可得最小值,解方程可得的值试题解析:(1)∵22a+1>25a-2.∴2a+1>5a-2,即3a<3∴a<1,∵a>0,a<1∴0<a<1.∵loga(3x+1)<loga(7-5x).∴等价为,即,∴,即不等式的解集为(,).(2)∵0<a<1∴函数y=loga(2x-1)在区间[3,6]上为减函数,∴当x=6时,y有最小值为-2,即loga11=-2,∴a-2==11,解得a=.20、(1);(2)12【解题分析】(1)选取为基底,用基底表示其他向量后,由向量共线可得;(2)设,,求得,由函数知识得最大值【题目详解】(1)不共线,以它们为基底,由已知,又与共线,所以存在实数,使得,即,解得;(2)等腰梯形中,,,则,设,,则,,所以时,取得最大值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论