版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年苏科版八年级数学上第一次月考模拟热身卷(1.1-2.5盐城)(时间:100分钟满分:120分)一.选择题(共30分)1.下列图形中,不是轴对称图形的是()A. B.C.D.第1题图第2题图2.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个 B.3个 C.4个 D.5个3.三角形两边的垂直平分线的交点为O,则点O()A.到三边距离相等 B.到三顶点距离相等C.不在第三边的垂直平分线上 D.以上都不对4.下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形5.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C.D.6.如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm第6题图第7题图第8题图第9题图第10题图7.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形 C.等边三角形 D.非等腰三角形8.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF9.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.AC垂直平分BD B.△ABD≌△CBD C.△AOB≌△COB D.△AOD≌△COD10.AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个二.填空题(30分)11.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是.第11题图第12题图第13题图第14题图第15题图12.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.13.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.第16题图第17题图第18题图第19题图第20题图17.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有种.18.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠BPD=°.19.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系.20.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=秒时,△PEC与△QFC全等.三、解答题(60分)21.(6分)已知:∠AOB,点M、N.求作:①∠AOB的平分线OC;②点P,在OC上,且PM=PN.22.(8分)已知:如图,△ABC中,∠CAB=90°,AC=AB,点D、E是BC上的两点,且∠DAE=45°,△ADC与△ADF关于直线AD对称.(1)求证:△AEF≌△AEB;(2)∠DFE=°.23.(10分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)求证:△ACD≌△CBE;(2)猜想线段AD、BE、DE之间的关系,并说明理由.24.(12分)阅读理解:“分割、拼凑法”是几何证明中常用的方法.苏科版八上数学第一章《全等三角形》中,有以下两道题,其中问题1中的图1分割成两个全等三角形,而问题2是“HL定理”的证明,却将图2两个直角三角形拼成了一个等腰三角形图3.请按照上面的思路,补全问题1、2的解答:问题1:已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.问题2:如图2,在△ABC和△A1B1C1中,∠C=∠C1=90°,AB=A1B1,AC=A1C1.求证:△ABC≌△A1B1C1(补全证明过程).证明:把两个直角三角形如图3所示拼在一起仿照上面的方法解答问题:问题3:如图4,△ABC中,∠ACB=90°,四边形CDEF是正方形,AE=5,BE=3.求阴影部分的面积和.25.(12分)(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.26.(12分)(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.教师样卷一.选择题(共30分)1.下列图形中,不是轴对称图形的是A)A. B.C.D.第1题图第2题图2.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有(B)A.2个 B.3个 C.4个 D.5个3.三角形两边的垂直平分线的交点为O,则点O(B)A.到三边距离相等 B.到三顶点距离相等C.不在第三边的垂直平分线上 D.以上都不对4.下列说法中,正确的是(D)A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形5.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是(B)A. B. C.D.6.如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为(C)A.3cm B.4cm C.5cm D.6cm第6题图第7题图第8题图第9题图第10题图7.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是(C)A.钝角三角形 B.直角三角形 C.等边三角形 D.非等腰三角形8.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?(B)A.△ACF B.△ADE C.△ABC D.△BCF9.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是(A)A.AC垂直平分BD B.△ABD≌△CBD C.△AOB≌△COB D.△AOD≌△COD10.AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有(D)A.1个 B.2个 C.3个 D.4个解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故④正确∴CE=BF,∠F=∠CED,故①正确,∴BF∥CE,故③正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故②正确,综上所述,正确的是①②③④.二.填空题(30分)11.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是∠C=∠B.第11题图第12题图第13题图第14题图第15题图12.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.13.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选C点(C或D).14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.15.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4个.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.第16题图第17题图第18题图第19题图第20题图17.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有4种.18.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠BPD=60°.19.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.20.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=1或或12秒时,△PEC与△QFC全等.解:分为三种情况:①如图1,P在AC上,Q在BC上,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,则△PCE≌△CQF,∴PC=CQ,即6﹣t=8﹣3t,t=1;②如图1,P在BC上,Q在AC上,∵由①知:PC=CQ,t﹣6=3t﹣8,t=1;t﹣6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6﹣t=3t﹣8,t=;④当Q到A点停止,P在BC上时,AC=PC,t﹣6=6时,解得t=12.P和Q都在BC上的情况不存在,∵P的速度是每秒1cm,Q的速度是每秒3cm;答案为:1或或12.三、解答题(60分)21.(6分)已知:∠AOB,点M、N.求作:①∠AOB的平分线OC;②点P,在OC上,且PM=PN.解:①如图,OC为所作;②点P为所作.22.(8分)已知:如图,△ABC中,∠CAB=90°,AC=AB,点D、E是BC上的两点,且∠DAE=45°,△ADC与△ADF关于直线AD对称.(1)求证:△AEF≌△AEB;(2)∠DFE=°.解:(1)∵把△ADC沿着AD折叠,得到△ADF,∴△AFD≌△ADC;∴AC=AF,CD=FD,∠C=∠DFA,∠CAD=∠FAD,∵AB=AC,∴AF=AB,∵∠DAE=45°,∴∠FAE=∠BAE,在△AFE与△ACE中,,∴△AFE≌△ABE,(2)由(1)知△AFE≌△ABE,∴∠AFE=∠C,EF=EC,∴∠DFE=∠DFA+∠EFA=∠B+∠C=90°.故答案为:90°.23.(10分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)求证:△ACD≌△CBE;(2)猜想线段AD、BE、DE之间的关系,并说明理由.证明:(1)∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°﹣∠ECB.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,理由如下:∵△ACD≌△CBE,∴CD=BE,AD=CE,又∵CE=CD﹣DE,∴AD=BE﹣DE24.(12分)阅读理解:“分割、拼凑法”是几何证明中常用的方法.苏科版八上数学第一章《全等三角形》中,有以下两道题,其中问题1中的图1分割成两个全等三角形,而问题2是“HL定理”的证明,却将图2两个直角三角形拼成了一个等腰三角形图3.请按照上面的思路,补全问题1、2的解答:问题1:已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.问题2:如图2,在△ABC和△A1B1C1中,∠C=∠C1=90°,AB=A1B1,AC=A1C1.求证:△ABC≌△A1B1C1(补全证明过程).证明:把两个直角三角形如图3所示拼在一起仿照上面的方法解答问题:问题3:如图4,△ABC中,∠ACB=90°,四边形CDEF是正方形,AE=5,BE=3.求阴影部分的面积和.解:问题1:证明:作中线AD,在△ABD和△ACD中,,∴△ABD≌△ACD,∴∠B=∠C;问题2:证明:∵∠C=∠C1=90°,在Rt△ABC和Rt△A1B1C1中,,∴Rt△ABC≌△RtA1B1C1;问题3:如图4,把△ADE逆时针旋转90°,则△ADE≌△A′DF,∴A′E=AE=5,∠A′EF=∠AED,∵∠AED+∠BEF=90°,∴∠A′EF+∠BEF=∠A′EB=90°,∴S阴影=S△ADE+S△BEF=S△A′FE+S△BEF=S△A′EB=A′E•BE=×5×3=.25.(12分)(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.解:(1)如图①,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,,∴△ABD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄山学院《电视专题片制作》2022-2023学年第一学期期末试卷
- 淮阴师范学院《小学综合实践活动专题》2021-2022学年第一学期期末试卷
- 淮阴师范学院《广播电视采访与写作》2023-2024学年第一学期期末试卷
- 淮阴工学院《数据结构5》2021-2022学年第一学期期末试卷
- 淮阴工学院《品牌设计与推广1》2023-2024学年第一学期期末试卷
- 淮阴师范学院《安装工程造价软件应用》2023-2024学年第一学期期末试卷
- 淮阴工学院《园艺植物保护学》2021-2022学年第一学期期末试卷
- DB6505T184-2024南美白对虾淡水养殖技术规程
- 文书模板-《钢筋工实训报告》
- 实施职业健康与环境保护的有效方法探讨考核试卷
- 坐井观天 (5)
- 小学三年级上册综合实践-6.1昆虫的美食-(14张)ppt
- 起重机设计手册
- 女性生殖系统解剖完整版
- 定量装车控制系统方案书
- 到货验收单(共1页)
- 吉林市基准地价(2009年)
- 人教版八年级物理上册全知识点大全
- 破产管理人报酬计算器
- 国家生态环境建设项目管理办法
- 秦腔传统剧《草坡面理》
评论
0/150
提交评论