版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届茂名市重点中学高一数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若log2a<0,,则()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<02.函数f(x)=x2-3x-4的零点是()A. B.C. D.3.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC4.函数的图象可能是()A. B.C. D.5.若,则()A. B.aC.2a D.4a6.已知,且,则的最小值为A. B.C. D.7.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则8.设则的值为A. B.C.2 D.9.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④10.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________12.函数的零点个数是________.13.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______14.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______15.设某几何体的三视图如图所示(单位:m),则该几何体的体积为________16.函数的值域为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为何值时,直线与:(1)平行(2)垂直18.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值19.某同学作函数f(x)=Asin(x+)在一个周期内的简图时,列表并填入了部分数据,如下表:0-3(1)请将上表数据补充完整,并求出f(x)的解析式;(2)若f(x)在区间(m,0)内是单调函数,求实数m的最小值.20.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值21.已知函数同时满足下列四个条件中的三个:①当时,函数值为0;②的最大值为;③的图象可由的图象平移得到;④函数的最小正周期为.(1)请选出这三个条件并求出函数的解析式;(2)对于给定函数,求该函数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】,则;,则,故选D2、D【解题分析】直接利用函数零点定义,解即可.【题目详解】由,解得或,函数零点是.故选:.【题目点拨】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.3、D【解题分析】因为A′B′与y′轴重合,B′C′与x′轴重合,所以AB⊥BC,AB=2A′B′,BC=B′C′.所以在直角△ABC中,AC为斜边,故AB<AD<AC,BC<AC.故选D.4、C【解题分析】令,可判断出g(x)的图象就是将h(x)的图象向上平移一个单位,由图像的对称性即可得到答案.【题目详解】令则,即g(x)的图象就是将h(x)的图象向上平移一个单位即可.因为h(-x)=f(-x)-f(x)=-h(x),即函数h(x)为奇函数,图象关于原点对称,所以的图象关于(0,1)对称.故选:C5、A【解题分析】利用对数的运算可求解.【题目详解】,故选:A6、C【解题分析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【题目详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【题目点拨】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题7、D【解题分析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【题目详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【题目点拨】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.8、D【解题分析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【题目详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【题目点拨】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题9、B【解题分析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【题目详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【题目点拨】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.10、A【解题分析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【题目详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【题目详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:12、3【解题分析】令f(x)=0求解即可.【题目详解】,方程有三个解,故f(x)有三个零点.故答案为:3.13、【解题分析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【题目详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【题目点拨】本题主要考查了圆锥的三视图和体积计算,属于基础题14、①-2②.【解题分析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【题目详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;15、4【解题分析】根据三视图确定该几何体为三棱锥,由题中数据,以及棱锥的体积公式,即可求出结果.【题目详解】由三视图可得:该几何体为三棱锥,由题中数据可得:该三棱锥的底面是以为底边长,以为高的三角形,三棱锥的高为,因此该三棱锥的体积为:.故答案为:.【题目点拨】本题主要考查由几何体的三视图求体积的问题,熟记棱锥的结构特征,以及棱锥的体积公式即可,属于基础题型.16、【解题分析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【题目详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【题目点拨】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】利用直线与直线平行与垂直的性质即可求出参数a的值.特别注意直线斜率不存在的情况.【题目详解】(1)当或时,两直线即不平行,也不垂直.当且,直线的斜率,在轴上的截距;直线的斜率,在轴上的截距.由,且,即,且,得或,当或时,两直线平行.(2)由,即,得.当时,两直线垂直【题目点拨】本题主要考查直线与直线平行与垂直的性质,属于基础题型.18、(1);(2);(3)7.【解题分析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【题目详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【题目点拨】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用19、(1)表格见解析,(2)【解题分析】(1)由题意,根据五点法作图,利用正弦函数的性质,补充表格,并求出函数的解析式(2)由题意利用正弦函数的单调性,求出实数的最小值【小问1详解】解:作函数,,的简图时,根据表格可得,,,结合五点法作图,,,故函数的解析式为列表如下:00300【小问2详解】解:因为,所以,若在区间内是单调函数,则,且,解得,故实数的最小值为20、(1)(2)【解题分析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,令,则,,又,,解得,即,所以函数的零点为【小问2详解】解:因为,,令,则,,,对称轴,当,即时,,;②当,即时,,(舍;综上:实数的值为21、(1)选择①②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《鸿产品介绍》课件
- 2024年度市场营销与合作协议3篇
- 2024年度股权投资合同投资金额和投资项目详细描述2篇
- 《加权平均数》课件
- 2024年废旧电池回收处理与环境友好型产品研发合同3篇
- 2024年度融资租赁合同租金计算及支付期限2篇
- 二零二四年度钢筋工程市场推广合同3篇
- 2024年度钢筋工程成本控制与结算合同2篇
- 《室外照明设计》课件
- 2023六年级数学上册 六 百分数第7课时 用方程解百分数问题 3列方程解决稍复杂的百分数实际问题(3)说课稿 苏教版
- 2024年糖尿病指南解读
- 二十届三中全会精神知识竞赛试题及答案
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 人教版小学数学六年级上册《百分数》单元作业设计
- 增值税预缴税款表电子版
- 最新二年级看图写话10篇带格
- 《奇妙的建筑》教学设计大赛教案
- 脑干梗死患者疑难病例讨论
- 爱立信BSC硬件介绍
- 工程监理工作联系单(范本)范本
- 管理学案例分析之健力宝案例
评论
0/150
提交评论