版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滕州市2024届数学高一上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数fxA.0 B.1C.2 D.32.若,的终边(均不在y轴上)关于x轴对称,则()A. B.C. D.3.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.B.C.D.4.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④5.函数y=log2的定义域A.(,3) B.(,+∞)C.(,3) D.[,3]6.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.7.已知,函数在上递减,则的取值范围为()A. B.C. D.8.若,则的最小值是()A. B.C. D.9.函数在单调递增,且为奇函数,若,则满足的的取值范围是A. B.C. D.10.设,,,则有()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于的方程在有解,则的取值范围是________12.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________13.已知函数,则函数的零点个数为__________14.已知函数恰有2个零点,则实数m的取值范围是___________.15.函数一段图象如图所示,这个函数的解析式为______________.16.若函数满足,且当时,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)若,求;(2)若,求实数的取值范围.18.已知二次函数.(1)若函数满足,且.求的解析式;(2)若对任意,不等式恒成立,求的最大值.19.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值20.已知函数.(1)当时,解不等式;(2)设,若,,都有,求实数a的取值范围.21.已知函数图象的一条对称轴方程为,且其图象上相邻两个零点的距离为.(1)求的解析式;(2)若对,不等式恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】作出函数图像,数形结合求解即可.【题目详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B2、A【解题分析】因为,的终边(均不在轴上)关于轴对称,则,,然后利用诱导公式对应各个选项逐个判断即可求解【题目详解】因为,的终边(均不在轴上)关于轴对称,则,,选项,故正确,选项,故错误,选项,故错误,选项,故错误,故选:3、A【解题分析】根据所给数据,求出样本中心点,把样本中心点代入所给四个选项中验证,即可得答案【题目详解】解:由已知可得,所以这组数据的样本中心点为,因样本中心必在回归直线上,所以把样本中心点代入四个选项中验证,可得只有成立,故选:A.4、A【解题分析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A5、A【解题分析】由真数大于0,求解对分式不等式得答案;【题目详解】函数y=log2的定义域需满足故选A.【题目点拨】】本题考查函数的定义域及其求法,考查分式不等式的解法,是中档题6、B【解题分析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理7、B【解题分析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【题目详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【题目点拨】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题8、A【解题分析】先由得到,利用基本不等式“1的妙用”即可求出最小值.【题目详解】因为,所以且,所以且,即,所以当且仅当时,即时等号成立.故选:A9、D【解题分析】是奇函数,故;又是增函数,,即则有,解得,故选D.【题目点拨】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.10、C【解题分析】利用和差公式,二倍角公式等化简,再利用正弦函数的单调性比较大小.【题目详解】,,,因为函数在上是增函数,,所以由三角函数线知:,,因为,所以,所以故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】将原式化为,然后研究函数在上的值域即可【题目详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:12、【解题分析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【题目详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:13、3【解题分析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3故答案为:314、【解题分析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围.【题目详解】当时,恒有,此时无零点,则,∴要使上有2个零点,只需即可,故有2个零点有;当时,存在,此时有1个零点,则,∴要使上有1个零点,只需即可,故有2个零点有;综上,要使有2个零点,m的取值范围是.故答案为:.15、【解题分析】由图象的最大值求出A,由周期求出ω,通过图象经过(,0),求出φ,从而得到函数的解析式【题目详解】由函数的图象可得A=2,T==4π,∴解得ω=∵图象经过(,0),∴可得:φ=2kπ,k∈Z,解得:φ=2kπ,k∈Z,取k=0∴φ,故答案为:y=2sin(x)16、1009【解题分析】推导出,当时,从而当时,,,由此能求出的值【题目详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【题目点拨】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据题意,分别求出集合、,即可得到;(2)根据题意得,结合,即可得到实数的取值范围.【题目详解】(1)当时,,或,因此.(2)由(1)知,或,故,又因,所以,解得,故实数的取值范围是18、(1)(2)【解题分析】(1)利用待定系数的方法确定二次函数解析式(2)由二次不等式恒成立,转化参数关系,代入通过讨论特殊情况后配合基本不等式求出最值【小问1详解】设,由已知代入,得,对于恒成立,故,解得,又由,得,所以;【小问2详解】若对任意,不等式恒成立,整理得:恒成立,因为a不为0,所以,所以,所以,令,因为,所以,若时,此时,若时,,当时,即时,上式取得等号,综上的最大值为.19、(1);(2);(3).【解题分析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【题目详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【题目点拨】向量间的位置关系:两向量垂直,则,两向量平行,则.20、(1),(2)【解题分析】(1)由同角关系原不等式可化为,化简可得,结合正弦函数可求其解集,(2)由条件可得在上的最大值小于或等于在上的最小值,利用单调性求的最大值,利用换元法,通过分类讨论求的最小值,由此列不等式求实数a的取值范围.【小问1详解】由得,,当时,,由,而,故解得,所以的解集为,.【小问2详解】由题意可知在上的最大值小于或等于在上的最小值.因为在上单调递减,所以在上的值域为.则恒成立,令,于是在恒成立.当即时,在上单调递增,则只需,即,此时恒成立,所以;当即时,在上单调递减,则只需,即,不满足,舍去;当即时,只需,解得,而,所以.综上所述,实数a的取值范围为.21、(1)(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《合作方案推介》课件
- 口腔科正畸护理
- 2024年山东省第三届中小学生海洋知识竞赛题库及答案(初中组第201-300题)
- 安全小活动总结报告
- 大学生IT专业职业规划
- 2型糖尿病胰岛素治疗
- 苏教版语文六下教学课件教学
- 《公司创业》课件
- 第三单元双基能力提升训练-六年级下册语文练测乐园(含答案)
- 《江东区国家税务局》课件
- 水电站设备检修管理导则
- 无人机导航与通信技术PPT完整全套教学课件
- 公共行政学网上学习行为300字
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 缓冲托辊说明书
- 煤矿机电运输安全培训课件
- 2023年人教版新目标八年级英语下册全册教案
评论
0/150
提交评论