版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省2024届数学高一上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,则锐角等于A.30° B.45°C.60° D.75°2.已知是第四象限角,是角终边上的一个点,若,则()A.4 B.-4C. D.不确定3.已知函数的图像中相邻两条对称轴之间的距离为,当时,函数取到最大值,则A.函数的最小正周期为 B.函数的图像关于对称C.函数的图像关于对称 D.函数在上单调递减4.已知幂函数的图象过,则下列求解正确的是()A. B.C. D.5.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.6.已知,若方程有四个不同的实数根,,,,则的取值范围是()A.(3,4) B.(2,4)C.[0,4) D.[3,4)7.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定8.已知函数为偶函数,在单调递减,且在该区间上没有零点,则的取值范围为()A. B.C. D.9.终边在y轴上的角的集合不能表示成A. B.C. D.10.已知函数的上单调递减,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______12.若,则的最小值为__________.13.已知实数满足,则________14.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.15.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.16.若一扇形的圆心角为,半径为,则该扇形的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合18.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在直线的方程19.已知.(1)若在第二象限,求的值;(2)已知,且,求值.20.已知圆经过,两点,且圆心在直线上()求圆的方程()过的直线与圆相交于,且,求直线的方程21.如图所示,在中,,,与相交于点.(1)用,表示,;(2)若,证明:,,三点共线.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】因为向量共线,则有,得,锐角等于45°,选B2、B【解题分析】利用三角函数的定义求得.【题目详解】依题意是第四象限角,所以,.故选:B3、D【解题分析】由相邻对称轴之间的距离,得函数的最小正周期,求得,再根据当时,函数取到最大值求得,对函数的性质进行判断,可选出正确选项【题目详解】因为函数的图像中相邻两条对称轴之间的距离为,所以,函数的最小正周期,所以,又因为当时,函数取到最大值,所以,,因为,所以,,函数最小正周期,A错误;函数图像的对称轴方程为,,B错误;函数图像的对称中心为,,C错误;所以选择D【题目点拨】由的图像求函数的解析式时,由函数的最大值和最小值求得,由函数的周期求得,代值进函数解析式可求得的值4、A【解题分析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【题目详解】∵幂函数y=xα的图象过点(2,),∴2α,解得α,故f(x),即,故选A【题目点拨】本题考查了幂函数的定义,是一道基础题5、C【解题分析】讨论两种情况,利用排除法可得结果.【题目详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【题目点拨】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.6、D【解题分析】利用数形结合可得,结合条件可得,,,且,再利用二次函数的性质即得.【题目详解】由方程有四个不同的实数根,得函数的图象与直线有四个不同的交点,分别作出函数的图象与直线由函数的图象可知,当两图象有四个不同的交点时,设与交点的横坐标为,,设,则,,由得,所以,即设与的交点的横坐标为,,设,则,,且,所以,则故选:D.7、B【解题分析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【题目详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【题目点拨】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.8、D【解题分析】根据函数为偶函数,得到,再根据函数在单调递减,且在该区间上没有零点,由求解.【题目详解】因为函数为偶函数,所以,由,得,因为函数在单调递减,且在该区间上没有零点,所以,解得,所以的取值范围为,故选:D9、B【解题分析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【题目详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【题目点拨】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.10、C【解题分析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【题目详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【题目点拨】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、##0.75【解题分析】根据条件求出,,再代入即可求解.【题目详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:12、【解题分析】整理代数式满足运用基本不等式结构后,用基本不等式求最小值.【题目详解】∵∴当且仅当,时,取最小值.故答案为:【题目点拨】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,则要改变求最值的方法.13、4【解题分析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【题目详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.14、【解题分析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【题目详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:15、【解题分析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【题目详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:16、【解题分析】利用扇形的面积公式可求得结果.【题目详解】扇形的圆心角为,因此,该扇形的面积为.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),或或;(2)【解题分析】(1)解一元二次不等式求得集合,由交集、并集和补集的概念计算可得结果;(2)根据集合的包含关系可构造不等式组求得结果.【题目详解】(1),则或,,或或;(2),,,解得:,则实数的取值范围构成的集合为.18、(1);(2)【解题分析】分析:(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC的直线方程为,然后由点到直线的距离得出,就可以求出m的值,即可求出结果.详解:(1)由题意:ABCD为矩形,则AB⊥AD,又AB边所在的直线方程为:x-3y-6=0,所以AD所在直线的斜率kAD=-3,而点T(-1,1)在直线AD上所以AD边所在直线的方程为:3x+y+2=0.(2)方法一:由ABCD为矩形可得,AB∥DC,所以设直线CD的方程为x-3y+m=0.由矩形性质可知点M到AB、CD的距离相等所以=,解得m=2或m=-6(舍)所以DC边所在的直线方程为x-3y+2=0.方法二:方程x-3y-6=0与方程3x+y+2=0联立得A(0,-2),关于M的对称点C(4,2)因AB∥DC,所以DC边所在的直线方程为x-3y+2=0.点睛:本题主要考查直线方程的求法,在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况19、(1)(2)【解题分析】(1)根据题意,结合半角公式得,故,,再根据二倍角公式计算即可.(2)由题知,再结合正切的和角公式求解即可.【小问1详解】解:,∴∵在第二象限,∴,,∴【小问2详解】解:∴,20、(1)(2)x=2或15x﹣8y﹣30=0【解题分析】(1)由圆心C在直线2x﹣y﹣2=0上,可设圆C的圆心为(a,2a﹣2),半径为r,再由圆C过点A(1,4),B(3,6)两点,列关于a,r的方程组,求解可得a,r的值,则圆C的方程可求;(2)当直线l的斜率不存在时,直线方程为x=2,求得M,N的坐标,可得|MN|=2,满足题意;当直线l的斜率不存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,由|MN|=2,可得圆心到直线的距离为1,由点到直线的距离公式列式求得k值,则直线l的方程可求【题目详解】解:(1)∵圆心C在直线2x﹣y﹣2=0上,∴设圆C的圆心为(a,2a﹣2),半径为r,又∵圆C过点A(1,4),B(3,6)两点,∴,解得,则圆C的方程为(x﹣3)2+(y﹣4)2=4;(2)当直线l的斜率不存在时,直线方程为x=2,联立,解得M(2,4),N(2,4),此时|MN|;当直线l的斜率存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,∵|MN|=2,∴圆心到直线的距离为d,解得k,则直线l的方程为15x﹣8y﹣30=0,综上,直线l的方程为x=2或15x﹣8y﹣30=0【题目点拨】本题考查圆的方程的求法,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《合作方案推介》课件
- 口腔科正畸护理
- 2024年山东省第三届中小学生海洋知识竞赛题库及答案(初中组第201-300题)
- 安全小活动总结报告
- 大学生IT专业职业规划
- 2型糖尿病胰岛素治疗
- 苏教版语文六下教学课件教学
- 《公司创业》课件
- 第三单元双基能力提升训练-六年级下册语文练测乐园(含答案)
- 《江东区国家税务局》课件
- 水电站设备检修管理导则
- 无人机导航与通信技术PPT完整全套教学课件
- 公共行政学网上学习行为300字
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 缓冲托辊说明书
- 煤矿机电运输安全培训课件
- 2023年人教版新目标八年级英语下册全册教案
评论
0/150
提交评论