2024届安徽省白泽湖中学数学高一上期末质量跟踪监视模拟试题含解析_第1页
2024届安徽省白泽湖中学数学高一上期末质量跟踪监视模拟试题含解析_第2页
2024届安徽省白泽湖中学数学高一上期末质量跟踪监视模拟试题含解析_第3页
2024届安徽省白泽湖中学数学高一上期末质量跟踪监视模拟试题含解析_第4页
2024届安徽省白泽湖中学数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省白泽湖中学数学高一上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是Ax+y∈AB.x-y∈AC.xy∈AD.2.“”是“”的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.已知关于x的不等式解集为,则下列说法错误的是()A.B.不等式的解集为C.D.不等式的解集为4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,5.下列向量的运算中,正确的是A. B.C. D.6.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.7.已知实数,满足,则函数零点所在区间是()A. B.C. D.8.下列四个函数,最小正周期是的是()A. B.C. D.9.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.10.函数的图象的一个对称中心是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域是__________.12.当时,使成立的x的取值范围为______13.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.14.幂函数的图像过点,则___________.15.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB相交,则l的斜率k的取值范围是_____16.已知函数f(x)=,设a∈R,若关于x的不等式f(x)在R上恒成立,则a的取值范围是__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙、丙三人打靶,他们的命中率分别为,若三人同时射击一个目标,甲、丙击中目标而乙没有击中目标的概率为,乙击中目标而丙没有击中目标的概率为.设事件A表示“甲击中目标”,事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,B,C是相互独立事件.(1)求;(2)写出事件包含的所有互斥事件,并求事件发生的概率.18.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.19.如图,四边形是矩形,平面,平面,,(1)证明:平面平面;(2)求三棱锥的体积20.设n是不小于3的正整数,集合,对于集合Sn中任意两个元素.定义.若,则称A,B互为相反元素,记作或(1)若n=3,A=(0,1,0),B=(1,1,0),试写出,,以及A·B的值;(2)若,证明:;(3)设k是小于n的正奇数,至少含有两个元素的集合,且对于集合M中任意两个不同的元素,都有,试求集合M中元素个数的所有可能的取值21.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知(1)利用上述结论,证明:的图象关于成中心对称图形;(2)判断的单调性(无需证明),并解关于x的不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误;又∵1−2=−1∉A,故B“x−y∈A”错误;又∵,故D“∈A”错误;对于C,由,设,且.则.且,所以.故选C.2、B【解题分析】由等价于,或,再根据充分、必要条件的概念,即可得到结果.【题目详解】因为,所以,或,所以“”是“”的充分而不必要条件.故选:B.3、D【解题分析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.【题目详解】由已知可得-2,3是方程的两根,则由根与系数的关系可得且,解得,所以A正确;对于B,化简为,解得,B正确;对于C,,C正确;对于D,化简为:,解得,D错误故选:D.4、C【解题分析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【题目详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【题目点拨】本题考查了分式函数值域的求法及对新定义的理解,属中档题5、C【解题分析】利用平面向量的三角形法则进行向量的加减运算,即可得解.【题目详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误.故选:C.【题目点拨】本题考查平面向量的三角形法则,属于基础题.解题时,要注意向量的起点和终点.6、D【解题分析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【题目详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D7、B【解题分析】首先根据已知条件求出,的值并判断它们的范围,进而得出的单调性,然后利用零点存在的基本定理即可求解.【题目详解】∵,,∴,,∴,且为增函数,故最多只能有一个零点,∵,,∴,∴在内存在唯一的零点.故选:B.8、C【解题分析】依次计算周期即可.【题目详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.9、A【解题分析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题10、B【解题分析】利用正弦函数的对称性质可知,,从而可得函数的图象的对称中心为,再赋值即可得答案【题目详解】令,,解得:,.所以函数的图象的对称中心为,.当时,就是函数的图象的一个对称中心,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【题目详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:12、【解题分析】根据正切函数的图象,进行求解即可【题目详解】由正切函数的图象知,当时,若,则,即实数x的取值范围是,故答案为【题目点拨】本题主要考查正切函数的应用,利用正切函数的性质结合函数的单调性是解决本题的关键13、##-0.5【解题分析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【题目详解】由题设,,,令,可得,即,,所以,,则.故答案为:14、【解题分析】先设,再由已知条件求出,即,然后求即可.【题目详解】解:由为幂函数,则可设,又函数的图像过点,则,则,即,则,故答案为:.【题目点拨】本题考查了幂函数的解析式的求法,重点考查了幂函数求值问题,属基础题.15、k≥或k≤-4【解题分析】算出直线PA、PB的斜率,并根据斜率变化的过程中求得斜率的取值范围详解】直线PA的斜率为,同理可得PB的斜率为直线过点且与AB相交直线的斜率取值范围是k≥或k≤-4故答案为k≥或k≤-416、﹣≤a≤2【解题分析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【题目详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【题目点拨】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)互斥事件有:,【解题分析】(1)根据相互独立事件的乘法公式列方程即可求得.(2)直接写出事件包含的互斥事件,并利用对立事件的概率公式求事件发生的概率即可.【小问1详解】由题意知,A,B,C为相互独立事件,所以甲、丙击中目标而乙没有击中目标的概率乙击中目标而丙没有击中目标的概率,解得,.【小问2详解】事件包含的互斥事件有:,.18、(1)f(x)=;(2).【解题分析】(1)由可得,由此方程的解唯一,可得,可求出,再由f(2)=1,可求出的值,进而可求出函数f(x)的解析式;(2)由题意可得,然后求出的最小值,可得的最大值【题目详解】解:(1)由,得,即.因为方程有唯一解,所以,即,因为f(2)=1,所以=1,所以,所以=;(2)因为,所以,而,当,即时,取得最小值,此时取得最大值.19、(1)证明见解析(2)1【解题分析】(1)由平面,平面,得到,利用线面平行的判定定理得到平面,平面,然后利用面面平行的判定定理证明;(2)由平面,得到点到平面的距离,然后利用求解【小问1详解】证明:平面,平面,,又平面,平面,平面,在矩形中,,且平面,平面,平面,又,∴平面平面【小问2详解】平面,∴点到平面的距离为,∵四边形矩形,,,,20、(1)(2)证明见解析(3)集合M中元素的个数只可能是2【解题分析】(1)根据定义直接求解即可;(2)设,进而结合题意得,,再计算即可;(3)假设为集合M中的三个不相同的元素,进而结合题意,推出矛盾,得出假设不成立,即集合M中至多有两个元素,且时符合题意,故集合M中元素的个数只可能是2【小问1详解】解:因为若,则称A,B互为相反元素,记作或,所以,所以.【小问2详解】解:设,由,可得所以,当且仅当,即时上式“=”成立由题意可知即所以【小问3详解】解:解法1:假设为集合M中的三个不相同的元素则即又由题意可知或1,i=1,2,,n恰有k个1,与n-k个0设其中k个等于1项依次为n-k个等于0的项依次为由题意可知所以,同理所以即因为由(2)可知因为所以,设,由题意可知.所以,得与为奇数矛盾所以假设不成立,即集合M中至多有两个元素当时符合题意所以集合M中元素的个数只可能是2解法2:假设为集合M中的三个不相同的元素则即又由题意可知恰有k个1,与n-k个0设其中k个等于1的项依次为n-k个等于0的项依次由题意可知所以①同理②因为所以,①—②得又因为为奇数与矛盾所以假设不成立,即集合M中至多有两个元素当时符合题意所以集合M中元素的个数只可能是2【题目点拨】关键点点睛:本题第三问解题的关键在于利用反证法证明当为集合M中的三个不相同的元素时,结合题意推出与为奇数矛盾,进而得集合M中至多有两个元素,再举例当时符合题意即可.21、(1)证明见解析(2)为单调递减函数,不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论