海南省2024届数学高一上期末综合测试试题含解析_第1页
海南省2024届数学高一上期末综合测试试题含解析_第2页
海南省2024届数学高一上期末综合测试试题含解析_第3页
海南省2024届数学高一上期末综合测试试题含解析_第4页
海南省2024届数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省2024届数学高一上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.棱长为1的正方体可以在一个棱长为的正四面体的内部任意地转动,则的最小值为A. B.C. D.2.集合,,将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A. B.C. D.3.()A. B.1C.0 D.﹣14.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)5.计算A.-2 B.-1C.0 D.16.设,,,则a,b,c的大小关系是()A. B.C. D.7.已知、为非零向量,“=”是“=”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知,,,则的大小关系A. B.C. D.9.命题P:“,”的否定为A., B.,C., D.,10.一个三棱锥的三视图如右图所示,则这个三棱锥的表面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知sinα+cosα=,α∈(-π,0),则tanα=________.12.若x,y∈(0,+∞),且x+4y=1,则的最小值为________.13.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.14.函数的最小值为_________________15.已知是定义在R上的奇函数,当时,,则当时,______16.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?18.已知函数为上奇函数(1)求实数的值;(2)若不等式对任意恒成立,求实数的最小值19.化简或求值:(1);(2)20.某口罩生产厂家目前月生产口罩总数为100万,因新冠疫情的需求,拟按照每月增长率为扩大生产规模,试解答下面的问题:(1)写出第月该厂家生产的口罩数(万只)与月数(个)的函数关系式;(2)计算第10个月该厂家月生产的口罩数(精确到0.1万);(3)计算第几月该厂家月生产的口罩数超过120万只(精确到1月)【参考数据】:21.如图,正方形的边长为,,分别为边和上的点,且的周长为2.(1)求证:;(2)求面积的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由题意可知正方体的外接球为正四面体的内切球时a最小,此时R=,.2、B【解题分析】首先求出集合,再结合韦恩图及交集、并集、补集的定义计算可得;【题目详解】解:∵,,∴,则,,选项A中阴影部分表示的集合为,即,故A错误;选项B中阴影部分表示的集合由属于A但不属于B的元素构成,即,故B正确;选项C中阴影部分表示的集合由属于B但不属于A的元素构成,即,有1个元素,故C错误;选项D中阴影部分表示的集合由属于但不属于的元素构成,即,故D错误故选:B3、C【解题分析】直接利用诱导公式以及特殊角的三角函数求解即可.【题目详解】.故选:C.4、A【解题分析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【题目详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【题目点拨】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题5、C【解题分析】.故选C.6、C【解题分析】根据幂函数和指数函数的单调性比较判断【题目详解】∵,,∴.故选:C7、A【解题分析】根据“”和“”之间的逻辑推理关系,可得答案.【题目详解】已知、为非零向量,故由可知,;当时,比如,推不出,故“”是“”的充分不必要条件,故选:A8、D【解题分析】利用指数函数与对数函数的单调性即可得出【题目详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【题目点拨】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题9、B【解题分析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可【题目详解】解:命题P:“,”的否定是:,故选B【题目点拨】本题考察了“全称命题”的否定是“特称命题”,属于基础题.10、B【解题分析】由三视图可画出该三棱锥的直观图,如图,图中正四棱柱的底面边长为,高为,棱锥的四个面有三个为直角三角形,一个为腰长为,底长的等腰三角形,其面积分别为:,所以三棱锥的表面积为,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【题目详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【题目点拨】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.12、9【解题分析】由x+4y=1,结合目标式,将x+4y替换目标式中的“1”即可得到基本不等式的形式,进而求得它的最小值,注意等号成立的条件【题目详解】∵x,y∈(0,+∞)且x+4y=1∴当且仅当有时取等号∴的最小值为9故答案为:9【题目点拨】本题考查了基本不等式中“1”的代换,注意基本不等式使用条件“一正二定三相等”,属于简单题13、##【解题分析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【题目详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:14、【解题分析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【题目详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【题目点拨】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键15、【解题分析】根据奇函数的性质求解【题目详解】时,,是奇函数,此时故答案为:16、①.0.005(或)②.126.5(或126.5分)【解题分析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解题分析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【题目详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱笆的长度为;(2)由已知得,则,矩形菜园的面积为.由,可得,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,菜园的面积最大,最大面积是.【题目点拨】本题考查基本不等式的应用,在运用基本不等式求最值时,充分利用“积定和最小,和定积最大”的思想求解,同时也要注意等号成立的条件,考查计算能力,属于基础题.18、(1);(2)【解题分析】(1)由奇函数得到,再由多项式相等可得;(2)由是奇函数和已知得到,再利用是上的单调增函数得到对任意恒成立.利用参数分离得对任意恒成立,再求,上最大值可得答案【题目详解】(1)因为函数为上的奇函数,所以对任意成立,即对任意成立,所以,所以(2)由得,因为函数为上的奇函数,所以由(1)得,是上的单调增函数,故对任意恒成立所以对任意恒成立因为,令,由,得,即所以的最大值为,故,即的最小值为【题目点拨】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到,再利用参数分离后求的最大值,考查了学生分析问题、解决问题的能力.19、(1)99;(2)2.【解题分析】(1)根据指数幂的运算公式将式子进行化简求值即可;(2)对式子提公因式,结合同底的对数运算得到最终结果解析:(1)原式(2)原式20、(1);(2)112.7万只;(3)16个月.【解题分析】(1)每月增长率为指数式,依据实际条件列出解析式即可;(2)第10个月为时,带入计算可得结果;(3)根据参考数据带入数值计算.【题目详解】解:(1)因为每月增长率为,所以第月该厂家生产的口罩数,.(2)第10个月该厂家月生产的口罩数万只.(3)是增函数,当时,,当时,,所以当时,即第16个月该厂家月生产的口罩数超过120万只.21、(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论