江西省赣州市南康中学、平川中学、信丰中学2024届高一数学第一学期期末联考模拟试题含解析_第1页
江西省赣州市南康中学、平川中学、信丰中学2024届高一数学第一学期期末联考模拟试题含解析_第2页
江西省赣州市南康中学、平川中学、信丰中学2024届高一数学第一学期期末联考模拟试题含解析_第3页
江西省赣州市南康中学、平川中学、信丰中学2024届高一数学第一学期期末联考模拟试题含解析_第4页
江西省赣州市南康中学、平川中学、信丰中学2024届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市南康中学、平川中学、信丰中学2024届高一数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.抛掷两枚均匀的骰子,记录正面朝上的点数,则下列选项的两个事件中,互斥但不对立的是()A.事件“点数之和为奇数”与事件“点数之和为9”B.事件“点数之和为偶数”与事件“点数之和为奇数”C.事件“点数之和为6”与事件“点数之和为9”D.事件“点数之和不小于9”与事件“点数之和小于等于8”2.已知函数,若关于x的方程有五个不同实根,则m的值是()A.0或 B.C.0 D.不存在3.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.04.已知一个几何体的三视图如图所示,其中俯视图为半圆画,则该几何体的体积为()A B.C. D.5.设函数,A.3 B.6C.9 D.126.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能7.函数的大致图像为()A. B.C. D.8.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数,若函数在上有三个零点,则的最大值为A. B.C. D.10.函数的定义域为()A.R B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象经过点(16,4),则k-a的值为___________12.幂函数的图像经过点,则_______13.设,,依次是方程,,的根,并且,则,,的大小关系是___14.函数的反函数是___________.15.已知=,则=_____.16.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数定义域是,.(1)求函数的定义域;(2)若函数,求函数的最小值18.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=,(1)求φ;(2)求函数y=f(x)的单调增区间19.已知集合,或,(Ⅰ)求;(Ⅱ)求20.过圆内一点P(3,1)作弦AB,当|AB|最短时,求弦长|AB|.21.已知集合,.(1)求,;(2)若,且,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用对立事件、互斥事件的定义直接求解【题目详解】对于,二者能同时发生,不是互斥事件,故错误;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误;对于,二者不能同时发生,但能同时不发生,是互斥但不对立事件,故正确;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误故选:2、C【解题分析】令,做出的图像,根据图像确定至多存在两个的值,使得与有五个交点时,的值或取值范围,进而转为求方程在的值或取值范围有解,利用一元二次方程根的分布,即可求解.【题目详解】做出图像如下图所示:令,方程,为,当时,方程没有实数解,当或时,方程有2个实数解,当,方程有4个实数解,当时,方程有3个解,要使方程方程有五个实根,则方程有一根为1,另一根为0或大于1,当时,有或,当时,,或,满足题意,当时,,或,不合题意,所以.故选:C.【题目点拨】本题考查复合方程的解,换元法是解题的关键,数形结合是解题的依赖,或直接用选项中的值代入验证,属于较难题.3、D【解题分析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【题目详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D4、C【解题分析】由三视图可知,该几何体为半个圆柱,故体积为.5、C【解题分析】.故选C.6、B【解题分析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则7、D【解题分析】分析函数的定义域、奇偶性,以及的值,结合排除法可得出合适的选项.【题目详解】对任意的,,则函数的定义域为,排除C选项;,,所以,函数为偶函数,排除B选项,因为,排除A选项.故选:D.8、A【解题分析】先判断“”成立时,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【题目详解】“”成立时,,故“”成立,即“”是“”的充分条件;“”成立时,或,此时推不出“”成立,故“”不是“”的必要条件,故选:A.9、C【解题分析】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,画出函数图像,结合图象进而求得答案【题目详解】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,结合函数图象可知,当直线经过点时,取得最小值,从而取得最大值,且.【题目点拨】本题考查函数的零点问题,解题的关键是得出函数与的图象在上有三个不同的交点,属于一般题10、B【解题分析】要使函数有意义,则需要满足即可.【题目详解】要使函数有意义,则需要满足所以的定义域为,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【题目详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.12、【解题分析】本题首先可以根据函数是幂函数设函数解析式为,然后带入点即可求出的值,最后得出结果。【题目详解】因为函数是幂函数,所以可设幂函数,带入点可得,解得,故幂函数,即,答案为。【题目点拨】本题考查函数解析式的求法,考查对幂函数的性质的理解,可设幂函数解析式为,考查计算能力,是简单题。13、【解题分析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【题目详解】因为,,,所以,因为,,所以,,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【题目点拨】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题14、;【解题分析】根据指数函数与对数函数互为反函数直接求解.【题目详解】因为,所以,即的反函数为,故答案为:15、##0.6【解题分析】寻找角之间的联系,利用诱导公式计算即可【题目详解】故答案为:16、②③【解题分析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【题目详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由定义域,求得的定义域即为所求;(2)求函数的值域,再代入求最值【题目详解】(1)的定义域是,即的定义域是,所以的定义域为;(2),令,,,即,所以,当时取到【题目点拨】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件,复合函数相关问题要注意整体代换思想18、(1)φ=-π;(2)单调增区间为.【解题分析】(1)∵x=是函数y=f(x)的图象的对称轴,∴sin(2×+φ)=±1,∴+φ=kπ+,k∈Z.∵-π<φ<0,∴φ=-.(2)y=sin(2x-)由2kπ-≤2x-≤2kπ+,k∈Z.得kπ+≤x≤kπ+,k∈Z.所以函数y=sin(2x-)的单调增区间为[kπ+,kπ+],k∈Z19、(1)(2)【解题分析】(1)根据交集直接能算;(2)根据补集、并集运算求解.【题目详解】(1)因为,或,所以(2)由或,知,所以.20、.【解题分析】考虑直线AB的斜率不存在时,求出A,B坐标,得到,当直线AB的斜率存在时,圆的圆心(4,2),半径r=3,圆心(4,2)到直线AB的距离为:,利用勾股定理基本不不等式即可求出圆的最短的弦长【题目详解】(1)当直线AB的斜率不存在时,,所以(2)当直线AB的斜率存在时,圆心(4,2)到直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论