2024届广西壮族自治区来宾市数学高一上期末质量检测模拟试题含解析_第1页
2024届广西壮族自治区来宾市数学高一上期末质量检测模拟试题含解析_第2页
2024届广西壮族自治区来宾市数学高一上期末质量检测模拟试题含解析_第3页
2024届广西壮族自治区来宾市数学高一上期末质量检测模拟试题含解析_第4页
2024届广西壮族自治区来宾市数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西壮族自治区来宾市数学高一上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中与函数相等的是A. B.C. D.2.设函数,,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数3.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.4.已知,求().A.6 B.7C.8 D.95.已知函数:①y=2x;②y=log2x;③y=x-1;④y=;则下列函数图像(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②6.已知直线与直线平行,则的值为A.1 B.-1C.0 D.-1或17.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件8.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.39.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数10.在下列图象中,函数的图象可能是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,,则的最小值为____________.12.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______13.已知,若,则_______;若,则实数的取值范围是__________14.已知圆,则过点且与圆C相切的直线方程为_____15.已知函数,若,则___________.16.已知是定义在R上的周期为2的奇函数,当时,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值18.三角形ABC的三个顶点A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程19.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域20.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围21.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【题目详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【题目点拨】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.2、D【解题分析】通过诱导公式,结合正弦函数的性质即可得结果.【题目详解】,所以,,所以则是最小正周期为的奇函数,故选:D.3、B【解题分析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法4、B【解题分析】利用向量的加法规则求解的坐标,结合模长公式可得.【题目详解】因为,所以,所以.故选:B.【题目点拨】本题主要考查平面向量的坐标运算,明确向量的坐标运算规则是求解的关键,侧重考查数学运算的核心素养.5、D【解题分析】图一与幂函数图像相对应,所以应④;图二与反比例函数相对应,所以应为③;图三与指数函数相对应,所以应为①;图四与对数函数图像相对应,所以应为②所以对应顺序为④③①②,故选D6、A【解题分析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.7、B【解题分析】利用充分条件,必要条件的定义即得.【题目详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.8、D【解题分析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.9、C【解题分析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题10、C【解题分析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【题目详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【题目点拨】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解题分析】“1”的代换法去求的最小值即可.【题目详解】(当且仅当时等号成立)则的最小值为9故答案为:912、【解题分析】讨论函数在的单调性即可得解.【题目详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:13、①.②.【解题分析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【题目详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,14、【解题分析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【题目详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【题目点拨】本题考查了过圆上的点的求圆的切线方程,属于容易题.15、0【解题分析】由,即可求出结果.【题目详解】由知,则,又因为,所以.故答案:0.16、##【解题分析】根据函数的周期和奇偶性即可求得答案.【题目详解】因为函数的周期为2的奇函数,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解题分析】(1)证明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)证明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四边形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC⊂平面PAC,∴平面PAC⊥平面PBD(3)设AC∩BD=O,连接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD为二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考点:平面与平面垂直的判定.18、(1)x+2y-4=0(2)2x-y+6=0【解题分析】(1)直接根据两点式公式写出直线方程即可;(2)先根据直线的垂直关系求出高线的斜率,代入点斜式方程即可【题目详解】(1)BC边所在直线的方程为:=,即x+2y-4=0;(2)∵BC的斜率K1=-,∴BC边上的高AD的斜率K=2,∴BC边上的高线AD所在直线的方程为:y=2(x+3),即2x-y+6=0【题目点拨】此题考查了中点坐标公式以及利用两点式求直线方程的方法,属于基础题19、(1),.(2).【解题分析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的性质可求得答案;(2)根据函数的图象变换得到函数的解析式,再由正弦函数的性质可求得的值域.【小问1详解】解:因为,∴,即,所以,即,,∴的解集为,【小问2详解】解:由题可知,当时,,所以,所以,所以在区间上值域为20、(1)(2)【解题分析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.21、(1)证明见解析;(2)的最大值为,最小值为.【解题分析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【题目详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论