河南省各地2024届高一上数学期末考试试题含解析_第1页
河南省各地2024届高一上数学期末考试试题含解析_第2页
河南省各地2024届高一上数学期末考试试题含解析_第3页
河南省各地2024届高一上数学期末考试试题含解析_第4页
河南省各地2024届高一上数学期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省各地2024届高一上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,若恰有2个零点,则实数a的取值范围是()A. B.C. D.2.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是A. B.C. D.3.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米4.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为A. B.C. D.5.已知正弦函数f(x)的图像过点,则的值为()A.2 B.C. D.16.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④7.方程的解所在的区间为()A. B.C. D.8.在空间中,直线平行于直线,直线与为异面直线,若,则异面直线与所成角的大小为()A. B.C. D.9.已知函数,则的值是()A. B.C. D.10.已知圆C:x2+y2+2x=0与过点A(1,0)的直线l有公共点,则直线l斜率k的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则____________.12.已知角的终边经过点,且,则t的值为______13.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________14.已知,且是第三象限角,则_____;_____15.函数(且)的图像恒过定点______.16.已知为角终边上一点,且,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数求:的最小正周期;的单调增区间;在上的值域18.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程19.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域20.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.21.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用数形结合的方法,作出函数的图象,简单判断即可.【题目详解】依题意,函数的图象与直线有两个交点,作出函数图象如下图所示,由图可知,要使函数的图象与直线有两个交点,则,即.故选:B.【题目点拨】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.2、A【解题分析】由函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到,向右平移个单位得到,将代入得,所以函数的一个对称中心是,故选A3、D【解题分析】根据题意,建立水费与用水量的函数关系式,即可求解.【题目详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D4、C【解题分析】根据题意画出函数图像,由图像即可分析出由一个正零点,一个负零点a的范围【题目详解】如图,若存在两个零点,且一个为正数,另一个为负数,则,故选【题目点拨】本题考查了绝对值函数及零点的简单应用,属于基础题5、C【解题分析】由题意结合诱导公式有:.本题选择C选项.6、A【解题分析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A7、C【解题分析】将方程转化为函数的零点问题,根据函数单调性判断零点所处区间即可.【题目详解】函数在上单增,由,知,函数的根处在里,故选:C8、A【解题分析】根据异面直线所成角的定义与范围可得结果.【题目详解】因为且,故异面直线与所成角的大小为的补角,即为.故选:A.9、D【解题分析】根据题意,直接计算即可得答案.【题目详解】解:由题知,,.故选:D10、B【解题分析】利用点到直线的距离公式和直线和圆的位置关系直接求解【题目详解】根据题意得,圆心(﹣1,0),r=1,设直线方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圆心到直线的距离d1,解得k故选B【题目点拨】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】依据分段函数定义去求的值即可.【题目详解】由,可得,则由,可得故答案为:12、##0.5625【解题分析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【题目详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.13、【解题分析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【题目详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【题目点拨】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.14、①.##②.##0.96【解题分析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【题目详解】因,且是第三象限角,则,所以,.故答案为:;15、【解题分析】根据指数函数恒过定点的性质,令指数幂等于零即可.【题目详解】由,.此时.故图像恒过定点.故答案为:【题目点拨】本题主要考查指数函数恒过定点的性质,属于简单题.16、##【解题分析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【题目详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),;(3).【解题分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论;利用正弦函数的单调性,求得的单调增区间;利用正弦函数的定义域和值域,求得在上的值域【题目详解】函数,故函数的最小正周期为.令,求得,可得函数的增区间为,在上,,,,即的值域为【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性,单调性,定义域和值域,属于中档题.单调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间.18、(1);(2).【解题分析】(1)依题意可设,,分别代入到直线和中,求出点坐标,即可求出直线的方程;(2)由题意可知,求出,即可求出圆的方程【题目详解】(1)依题意可设,因为线段被点平分,所以,则,解得,,即,又过点,易得方程为(2)设圆半径为,则,其中为弦心距,,可得,故所求圆的方程为.19、(1)对称中心为,单调递减区间为(2)【解题分析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区间的值域,即可得到函数在区间上的值域【题目详解】解(1)令,得:,∴的对称中心为,由,得:,∴的单调区间为(2)由题意:∵∴∴∴的值域为【题目点拨】本题主要考查了正弦型函数对称中心、单调性以及在给定区间的值域,属于中档题.20、(1);(2)【解题分析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论