河南省信阳市予南高级中学2024届高一数学第一学期期末质量检测试题含解析_第1页
河南省信阳市予南高级中学2024届高一数学第一学期期末质量检测试题含解析_第2页
河南省信阳市予南高级中学2024届高一数学第一学期期末质量检测试题含解析_第3页
河南省信阳市予南高级中学2024届高一数学第一学期期末质量检测试题含解析_第4页
河南省信阳市予南高级中学2024届高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省信阳市予南高级中学2024届高一数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三条直线,,相交于一点,则的值是A.-2 B.-1C.0 D.12.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,3.与函数的图象不相交的一条直线是()A. B.C. D.4.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度得到 B.向右平移个单位长度得到C.向左平移个单位长度得到 D.向右平移个单位长度得到5.已知函数,,则的值域为()A. B.C. D.6.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.7.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.如图,,下列等式中成立的是()A. B.C. D.9.若,则下列不等式中,正确的是()A. B.C. D.10.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______12.已知函数=,若对任意的都有成立,则实数的取值范围是______13.对数函数(且)的图象经过点,则此函数的解析式________14._____15.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________.16.,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大18.已知直线与的交点为.(1)求交点的坐标;(2)求过交点且平行于直线的直线方程.19.(1)已知角的终边经过点,求的值;(2)已知,且,求cos()的值.20.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.21.设A是实数集的非空子集,称集合且为集合A的生成集(1)当时,写出集合A的生成集B;(2)若A是由5个正实数构成的集合,求其生成集B中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A,使其生成集,并说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】联立两条已知直线求得交点坐标,待定系数即可求得参数值.【题目详解】联立与可得交点坐标为,又其满足直线,故可得,解得.故选:.2、C【解题分析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【题目详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.3、C【解题分析】由题意求函数的定义域,即可求得与函数图象不相交的直线.【题目详解】函数的定义域是,解得:,当时,,函数的图象不相交的一条直线是.故选:C【题目点拨】本题考查正切函数的定义域,属于简单题型.4、A【解题分析】先利用辅助角公式将函数变形,然后利用图象的平移变换分析求解即可【题目详解】解:函数,将函数图象向左平移个单位可得的图象故选:5、A【解题分析】根据两角和的正弦公式、二倍角公式和辅助角公式化简可得,结合和正弦函数的单调性即可求出函数的最大值和最小值.【题目详解】由题意知,,由,得,又函数在上单调递增,在上单调递减,令,所以函数在上单调递增,在上单调递减,有,所以,故的值域为.故选:A6、C【解题分析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【题目详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.7、A【解题分析】根据充分条件、必要条件的概念求解即可.【题目详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A8、B【解题分析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【题目详解】因为,所以,所以,即,故选B【题目点拨】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题9、C【解题分析】利用不等式的基本性质判断.【题目详解】由,得,即,故A错误;则,则,即,故B错误;则,,所以,故C正确;则,所以,故D错误;故选:C10、A【解题分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【题目详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【题目详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【题目点拨】本题主要考查了圆锥的三视图和体积计算,属于基础题12、【解题分析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【题目详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:13、【解题分析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【题目详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.14、【解题分析】利用根式性质与对数运算进行化简.【题目详解】,故答案为:615、【解题分析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进而是结合前面的式子可求得答案【题目详解】因为f(x+1)为奇函数,所以的图象关于点对称,所以,且因为f(x+2)为偶函数,所以的图象关于直线对称,,所以,即,所以,即,当x∈[1,2]时,f(x)=ax2+b,则,因为,所以,得,因为,所以,所以当时,,所以,故答案为:16、【解题分析】分和两种情况解方程,由此可得出的值.【题目详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解题分析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【题目详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大,最大收益为282万元.【题目点拨】本题考查了函数在实际问题中的应用,分段函数模型的应用,二次函数型求最值的应用,属于基础题.18、(1)点的坐标是;(2)直线方程为.【解题分析】(1)联立两条直线的方程得到交点坐标;(2)根据条件可设所求直线方程为,将P点坐标代入得到参数值解析:(1)由解得所以点的坐标是.(2)因为所求直线与平行,所以设所求直线方程为把点坐标代入得,得故所求的直线方程为.19、(1);(2)【解题分析】(1)根据三角函数的定义可得,代入直接计算即可;(2)根据同角三角函数的基本关系求出,利用两角和的余弦公式计算即可.【题目详解】(1)因为角的终边经过点,,所以,,所以;(2)因,且,则,.20、(1)(2)【解题分析】(1)利用偶函数定义求出实数的值;(2)函数在上单调递减,明确函数的最值,得到实数的方程,解出实数的值.试题解析:(1)因为函数是偶函数,所以,即,所以.(2)当时,函数在上单调递减,所以,,又,所以,即,解得(舍),所以.21、(1)(2)7(3)不存在,理由见解析【解题分析】(1)利用集合的生成集定义直接求解.(2)设,且,利用生成集的定义即可求解;(3)不存在,理由反证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论