2024届山东省泰安三中、新泰二中、宁阳二中三校高一上数学期末统考试题含解析_第1页
2024届山东省泰安三中、新泰二中、宁阳二中三校高一上数学期末统考试题含解析_第2页
2024届山东省泰安三中、新泰二中、宁阳二中三校高一上数学期末统考试题含解析_第3页
2024届山东省泰安三中、新泰二中、宁阳二中三校高一上数学期末统考试题含解析_第4页
2024届山东省泰安三中、新泰二中、宁阳二中三校高一上数学期末统考试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省泰安三中、新泰二中、宁阳二中三校高一上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且,则()A. B.C. D.2.已知直线ax+by+c=0的图象如图,则()A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>03.下列函数中是增函数的为()A. B.C. D.4.已知函数在上是增函数,则实数的取值范围为()A. B.C. D.5.已知集合,则()A. B.C. D.6.若,,则下列结论正确的是()A. B.C. D.7.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.28.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.109.数列满足,且对任意的都有,则数列的前100项的和为A. B.C. D.10.函数f(x)=logA.(-∞,1) B.(2,+∞)C.(-∞,32) D.(3二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若与的夹角是锐角,则的取值范围为______12.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________13.已知正四棱锥的高为4,侧棱长为3,则该棱锥的侧面积为___________.14.已知幂函数在其定义域上是增函数,则实数___________15.已知,则_______.16.若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.18.已知函数,且(1)求a的值;(2)判断在区间上的单调性,并用单调性的定义证明你的判断19.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.20.设函数.(1)求的最小正周期和最大值;(2)求的单调递增区间.21.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】构造函数,判断的单调性和奇偶性,由此化简不等式,即得.【题目详解】∵函数,令,则,∴的定义域为,,所以函数为奇函数,又,当增大时,增大,即在上递增,由,可得,即,∴,∴,即.故选:B.2、D【解题分析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0;故选D.3、D【解题分析】根据基本初等函数的性质逐项判断后可得正确的选项.【题目详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.4、D【解题分析】利用二次函数单调性,列式求解作答.【题目详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D5、D【解题分析】求出集合A,再求A与B的交集即可.【题目详解】∵,∴.故选:D.6、C【解题分析】根据不等式的性质,逐一分析选项,即可得答案.【题目详解】对于A:因为,所以,因为,所以,故A错误;对于B:因为,所以,且,所以,故B错误;对于C:因为,所以,又,所以,故C正确;对于D:因为,,所以,所以,故D错误.故选:C7、A【解题分析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【题目详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【题目点拨】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.8、A【解题分析】由题意可知kAB==-2,所以m=-8.故选A9、B【解题分析】先利用累加法求出,再利用裂项相消法求解.【题目详解】∵,∴,又,∴∴,∴数列的前100项的和为:故选B【题目点拨】本题主要考查数列通项的求法,考查裂项相消求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、A【解题分析】根据复合函数的单调性求解即可.【题目详解】因为y=log13x为减函数,且定义域为0,+∞.所以x故求y=x2-3x+2的单调递减区间即可.又对称轴为x=32,y=x2-3x+2在故选:A【题目点拨】本题主要考查了复合函数的单调区间,需要注意对数函数的定义域,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用坐标表示出和,根据夹角为锐角可得且与不共线,从而构造出不等式解得结果.【题目详解】由题意得:,解得:又与不共线,解得:本题正确结果:【题目点拨】本题考查根据向量夹角求解参数范围问题,易错点是忽略两向量共线的情况.12、3【解题分析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【题目详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【题目点拨】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.13、【解题分析】由高和侧棱求侧棱在底面射影长,得底面边长,从而可求得斜高,可得侧面积【题目详解】如图,正四棱锥,是高,是中点,则是斜高,由已知,,则,是正方形,∴,,,侧面积侧故答案为:【题目点拨】关键点点睛:本题考查求正棱锥的侧面积.在正棱锥计算中,解题关键是掌握四个直角三角形:如解析中图中,正棱锥的几乎所有量在这四个直角三角形中都有反应14、【解题分析】根据幂函数定义,可求得a值,根据其单调性,即可得答案.【题目详解】因为为幂函数,所以,解得或,又在其定义域上是增函数,所以,所以.故答案为:15、【解题分析】直接利用二倍角的余弦公式求得cos2a的值【题目详解】∵.故答案为:16、1【解题分析】由已知结合两角和的正切求解【题目详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【题目点拨】本题考查两角和的正切公式的应用,是基础的计算题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2x-y-2=0;(2)【解题分析】(1)由圆的方程可求出圆心,再根据直线过点P、C,由斜率公式求出直线的斜率,由点斜式即可写出直线l的方程;(2)根据点斜式写出直线l的方程,再根据弦长公式即可求出【题目详解】(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为,直线l的方程为y=2(x-1),即2x-y-2=0(2)当直线l的倾斜角为45º时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.所以圆心C到直线l的距离为因为圆的半径为3,所以,弦AB的长【题目点拨】本题主要考查直线方程的求法以及圆的弦长公式的应用,意在考查学生的数学运算能力,属于基础题18、(1)4(2)在区间上单调递减,证明见解析【解题分析】(1)直接根据即可得出答案;(2)对任意,且,利用作差法比较的大小关系,即可得出结论.【小问1详解】解:由得,解得;【小问2详解】解:在区间内单调递减,证明:由(1)得,对任意,且,有,由,,得,,又由,得,于是,即,所以在区间上单调递减19、(1),;(2).【解题分析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【题目详解】(1)∵,∴,∴..∴∴,∴;(2)由(1)知,由,可得且,解得.综上所述:的取值范围是20、(1)最小正周期,最大值为;(2).【解题分析】把化简为,(1)直接写出最小正周期和最大值;(2)利用正弦函数的单调性直接求出单调递增区间.【题目详解】(1)的最小正周期;最大值为;(2)要求的单调递增区间,只需,解得:,即的单调递增区间为.21、(1)见解析.(2)[2-,1)∪(1,2+]【解题分析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论