版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省示范性高中2024届数学高一上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合M={x|x=×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么()A.M=N B.N⊆MC.M⊆N D.M∩N=∅2.设,,,则a,b,c的大小关系是()A. B.C. D.3.若函数,则的单调递增区间为()A. B.C. D.4.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游5.把表示成,的形式,则的值可以是()A. B.C. D.6.已知直线l经过两点,则直线l的斜率是()A. B.C.3 D.7.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,则球O的表面积是()A. B.C. D.8.函数的零点个数为(
)A.1 B.2C.3 D.49.已知,则角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限10.设,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.12.幂函数的图像经过点,则的值为____13.已知定义在上的函数,满足不等式,则的取值范围是______14.已知函数,,则________15.已知函数的两个零点分别为,则___________.16.函数恒过定点________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,单株成本投入(含施肥、人工等)为元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.已知圆的一般方程为.(1)求的取值范围;(2)若圆与直线相交于两点,且(为坐标原点),求以为直径的圆的方程.19.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围20.如图,正方形的边长为,,分别为边和上的点,且的周长为2.(1)求证:;(2)求面积的最小值.21.设函数,函数,且,的图象过点及(1)求和的解析式;(2)求函数的定义域和值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】变形表达式为相同的形式,比较可得【题目详解】由题意可即为的奇数倍构成的集合,又,即为的整数倍构成的集合,,故选C【题目点拨】本题考查集合的包含关系的判定,变形为同样的形式比较是解决问题的关键,属基础题2、C【解题分析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【题目详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.3、A【解题分析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【题目详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.4、B【解题分析】将该正方体折叠,即可判断对立面的字.【题目详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【题目点拨】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.5、B【解题分析】由结合弧度制求解即可.【题目详解】∵,∴故选:B6、B【解题分析】直接由斜率公式计算可得.【题目详解】由题意可得直线l的斜率.故选:B.7、A【解题分析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC=∴SA⊥AC,SB⊥BC,SC=∴球O的半径R==1∴球O的表面积S=4πR2=4π故选A点睛:本题考查球的表面积的求法,合理地作出图形,确定球心,求出球半径是解题的关键8、B【解题分析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点9、A【解题分析】根据题意,由于,则说明正弦值和余弦值都是正数,因此可知角所在的象限是第一象限,故选A.考点:三角函数的定义点评:主要是考查了三角函数的定义的运用,属于基础题10、A【解题分析】先计算得到,,再利用展开得到答案.详解】,,;,;故选:【题目点拨】本题考查了三角函数值的计算,变换是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.12、2【解题分析】因为幂函数,因此可知f()=213、【解题分析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【题目详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【题目点拨】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题14、【解题分析】发现,计算可得结果.【题目详解】因为,,且,则.故答案为-2【题目点拨】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.15、【解题分析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;【题目详解】解:依题意令,即,所以方程有两个不相等实数根、,所以,,所以;故答案为:16、【解题分析】根据函数图象平移法则和对数函数的性质求解即可【题目详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4千克,505元.【解题分析】(1)用销售额减去成本投入得出利润的解析式;(2)判断的单调性,及利用基本不等式求出的最大值即可【题目详解】解:(1)由题意得:,(2)由(1)中得(i)当时,;(ii)当时,当且仅当时,即时等号成立.因为,所以当时,,所以当施用肥料为4千克时,种植该果树获得的最大利润是505元.【题目点拨】方法点睛:该题考查的是有关函数的应用问题,解题方法如下:(1)根据题意,结合利润等于收入减去支出,得到函数解析式;(2)利用分段函数的最大值等于每段上的最大值中的较大者,结合求最值的方法得到结果.18、(1);(2)【解题分析】(1)根据圆的一般方程成立条件,,代入即可求解;(2)联立直线方程和圆的方程,消元得关于的一元二次方程,列出韦达定理,求解中点坐标为圆心,为半径,即可求解圆的方程.【题目详解】(1),,,,,解得:(2),将代入得,,,,半径∴圆的方程为【题目点拨】(1)考查圆的一般方程成立条件,属于基础题;(2)考查直线与圆位置关系,联立方程组法求解,结合一元二次方程韦达定理,综合性较强,难度一般.19、(1)(2)【解题分析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问2详解】解:由已知可得,方程在上有2个不等的实数解,即方程在上有2个不等的实数解令,因为,,,,,令,则,,作出函数图象如下图所示:要使方程在上有2个不等的实数解,则20、(1)证明见解析;(2).【解题分析】(1)补形得证明其与全等,从而得证.(2)引进参数,由已知建立参数变量之间的等量关系,再用方程根的判别式获得变量最值,进一步得到所求面积最值.【题目详解】(1)如图:延长至,使,连接,则.故,,.又.,即.(2)设,,,则,,,于是,整理得:,.即.又,,当且仅当时等式成立.此时,因此当,时,取最小值.的最小值为.【题目点拨】方法点睛:引进参数建立参变量方程,再变换主次元,利用方程根的判别式,确定参数取值范围是求最值的方法之一.21、(1),;(2),.【解题分析】(1)根据得出关于方程,求解方程即可;(2)根据的图象过点及,列方程组求得的解析式,可得,解不等式可求得定义域,根据二次函数的性质,配方可得,利用对数函数的单调性求解即可.【题目详解】(1)因为,;因为的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年杭州科技职业技术学院单招职业倾向性测试模拟测试卷附答案
- 2026年江西建院单招试题附答案
- 2026年伊春职业学院单招综合素质笔试模拟试题带答案解析
- 2026年重庆市江津区社区专职人员招聘(642人)笔试备考试题及答案解析
- 2026年心理知识大赛试题及答案1套
- 2026年心理学知识试题及一套答案
- 2026年物业电工试题含答案
- 中国烟草总公司青州中等专业学校2026年高校毕业生招聘4人(山东)笔试备考题库及答案解析
- 广安市武胜超前外国语学校招聘笔试备考试题及答案解析
- 2026广西南宁市兴宁区五塘镇中心学校春季学期顶岗教师招聘笔试备考题库及答案解析
- 小学音乐教师年度述职报告范本
- 国家开放大学电大本科《流通概论》复习题库
- 机关档案汇编制度
- 2025年下半年四川成都温江兴蓉西城市运营集团有限公司第二次招聘人力资源部副部长等岗位5人参考考试题库及答案解析
- 2026福建厦门市校园招聘中小学幼儿园中职学校教师346人笔试参考题库及答案解析
- 2025年高职物流管理(物流仓储管理实务)试题及答案
- 设备管理体系要求2023
- 2025年学法减分试题及答案
- 2025年特种作业人员考试题库及答案
- GB/T 1048-2019管道元件公称压力的定义和选用
- 文化创意产品设计及案例PPT完整全套教学课件
评论
0/150
提交评论