




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省上饶市广丰区丰溪中学九年级数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m2.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103 B.55×103 C.0.55×105 D.5.5×1043.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或94.关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m> B.m>且m≠2 C.-≤m≤2 D.<m<25.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.6.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)7.使关于的二次函数在轴左侧随的增大而增大,且使得关于的分式方程有整数解的整数的和为()A.10 B.4 C.0 D.38.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,则ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1 C.x=-3 D.x=-29.抛物线的图像与坐标轴的交点个数是()A.无交点 B.1个 C.2个 D.3个10.下列事件中,必然事件是()A.一定是正数B.八边形的外角和等于C.明天是晴天D.中秋节晚上能看到月亮11.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40° B.50° C.80° D.100°12.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2) B.图象位于第二、四象限C.若x<﹣2,则0<y<3 D.在每一个象限内,y随x值的增大而减小二、填空题(每题4分,共24分)13.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了米.14.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.15.如图,与⊙相切于点,,,则⊙的半径为__________.16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是______m.17.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.18.若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为___.三、解答题(共78分)19.(8分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,,,的仰角分别是30°和10°,,,且.(1)求点的铅直高度;(2)求两点的水平距离.(结果精确到,参考数据:)20.(8分)如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(10分)如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动.(1)当点A在x轴的正半轴上时,直接写出点C的坐标;(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式.23.(10分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)24.(10分)在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.25.(12分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.26.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】迎水坡AB的坡比为3:4得出,再根据BC=6m得出AC的值,再根据勾股定理求解即可.【题目详解】由题意得∴∴故选:C.【题目点拨】本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.2、D【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】55000的小数点向左移动4位得到5.5,所以55000用科学记数法表示为5.5×104,故选D.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、D【解题分析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【题目详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【题目点拨】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4、D【解题分析】试题分析:根据题意得且△=,解得且,设方程的两根为a、b,则=,,而,∴,即,∴m的取值范围为.故选D.考点:1.根的判别式;2.一元二次方程的定义.5、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【题目详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【题目点拨】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.6、C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【题目详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【题目点拨】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7、A【分析】根据“二次函数在y轴左侧y随x的增大而增大”求出a的取值范围,然后解分式方程,最后根据整数解及a的范围即可求出a的值,从而得到结果.【题目详解】∵关于的二次函数在轴左侧随的增大而增大,,解得,把两边都乘以,得,整理,得,当时,,,∴使为整数,且的整数的值为2、3、5,∴满足条件的整数的和为.故选:A.【题目点拨】本题考查了二次函数的性质与对称轴,解分式方程,解分式方程时注意符号的变化.8、A【解题分析】已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,由此可得抛物线与x轴的另一个交点坐标为(-3,0),所以方程ax2+bx+c=0的解是x1=-3,x2=1,故选A.9、B【分析】已知二次函数的解析式,令x=0,则y=1,故与y轴有一个交点,令y=0,则x无解,故与x轴无交点,题目求的是与坐标轴的交点个数,故得出答案.【题目详解】解:∵∴令x=0,则y=1,故与y轴有一个交点∵令y=0,则x无解∴与x轴无交点∴与坐标轴的交点个数为1个故选B.【题目点拨】本题主要考查二次函数与坐标轴的交点,熟练二次函数与x轴和y轴的交点的求法以及仔细审题是解决本题的关键.10、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、A【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【题目详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°;故选A.【题目点拨】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.12、D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【题目详解】A、∵(﹣3)×2=﹣6,∴图象必经过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C、∵x=-2时,y=3且y随x的增大而而增大,∴x<﹣2时,0<y<3,故本选项正确;D、函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.【题目点拨】本题考查的是反比例函数的性质,在解答此类题目时要注意其增减性限制在每一象限内,不要一概而论.二、填空题(每题4分,共24分)13、25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【题目详解】解:设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=25,即它距离地面的垂直高度下降了25米.【题目点拨】此题考查三角函数的应用.关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.14、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【题目详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【题目点拨】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.15、【解题分析】与⊙相切于点,得出△ABO为直角三角形,再由勾股定理计算即可.【题目详解】解:连接OB,∵与⊙相切于点,∴OB⊥AB,△ABO为直角三角形,又∵,,由勾股定理得故答案为:【题目点拨】本题考查了切线的性质,通过切线可得垂直,进而可应用勾股定理计算,解题的关键是熟知切线的性质.16、10【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令,求出x的值,x的正值即为所求.【题目详解】在函数式中,令,得,解得,(舍去),∴铅球推出的距离是10m.【题目点拨】本题是二次函数的实际应用题,需要注意的是中3代表的含义是铅球在起始位置距离地面的高度;当时,x的正值代表的是铅球最终离原点的距离.17、2α【解题分析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.18、0或【分析】由题意可分情况进行讨论:①当m=0时,该函数即为一次函数,符合题意,②当m≠0时,该函数为二次函数,然后根据二次函数的性质进行求解即可.【题目详解】解:由题意得:①当m=0时,且m+2=2,该函数即为一次函数,符合题意;②当m≠0时,该函数为二次函数,则有:∵图象与x轴只有一个交点,∴,解得:,综上所述:函数与x轴只有一个交点时,m的值为:0或故答案为:0或.【题目点拨】本题主要考查二次函数的图像与性质及一次函数的性质,熟练掌握二次函数的图像与性质及一次函数的性质是解题的关键.三、解答题(共78分)19、(1)点A的铅直高度是2019mm;(2)A,E两点的水平距离约为3529mm.【分析】(1)如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M,利用求出AH的长,利用求出DM的长,从而求出AG的长,即点的铅直高度;(2)利用求出CH的长,再利用求出EM,从而求出A,E两点的水平距离.【题目详解】如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M.(1)在Rt△ACH中,∠ACH=30°,AC=AB﹣BC=1700∴∴AH=850在Rt△DEM中,∴DM≈357∴AG=AH+CD+DM≈850+812+357=2019∴点A的铅直高度是2019mm.
(2)∵在Rt△ACH中,,∴CH≈1471∵在Rt△DEM中,,∴EM≈2058∴EG=EM+CH≈3529
∴A,E两点的水平距离约为3529mm.【题目点拨】本题考查了三角函数的应用,利用特殊三角函数的值求解线段长是解题的关键.20、(1)见解析;(2);(3)【分析】(1)连接OC,由OB=OC,利用等边对等角得到∠BCO=∠B,由∠ACD=∠B,得到∠ACD+∠OCA=90°,即可得到EF为圆O的切线;(2)证明Rt△ABC∽Rt△ACD,可求出AC=2,由勾股定理求出BC的长即可;(3)求出∠B=30°,可得∠AOC=60°,在Rt△ACD中,求出CD,然后用梯形ADCO和扇形OAC的面积相减即可得出答案.【题目详解】(1)证明:连接OC,∵AB是⊙O直径,∴∠ACB=90°,即∠BCO+∠OCA=90°,∵OB=OC,∴∠BCO=∠B,∵∠ACD=∠B,∴∠ACD+∠OCA=90°,∵OC是⊙O的半径,∴EF是⊙O的切线;(2)解:在Rt△ABC和Rt△ACD中,∵∠ACD=∠B,∠ACB=∠ADC,∴Rt△ABC∽Rt△ACD,∴,∴AC2=AD•AB=1×4=4,∴AC=2,∴;(3)解:∵在Rt△ABC中,AC=2,AB=4,∴∠B=30°,∴∠AOC=60°,在Rt△ADC中,∠ACD=∠B=30°,AD=1,∴CD===,∴S阴影=S梯形ADCO﹣S扇形OAC=.【题目点拨】本题是圆的综合题,考查了切线的判定,圆周角定理,相似三角形的判定与性质,勾股定理以及扇形面积的计算,熟练掌握圆的基本性质是解本题的关键.21、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解题分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【题目详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)点A的坐标为(1,0)时,AB=AC=﹣1,点C的坐标为(1,﹣1)或(1,1﹣);(2)见解析;(3)S==﹣x,其中﹣1≤x≤1.【分析】(1)A点坐标为(1,0),根据AB=AC,分两种情形求出C点坐标;
(2)根据题意过点O作OM⊥BC于点M,求出OM的长,与半径比较得出位置关系;
(3)过点A作AE⊥OB于点E,在Rt△OAE中求AE的长,然后再在Rt△BAE中求出AB的长,进而求出面积的表达式;【题目详解】(1)点A的坐标为(1,0)时,,点C的坐标为或;(2)如图1中,结论:直线BC与⊙O相切.理由如下:过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,∴OM=OB•sin45°=1∴直线BC与⊙O相切;(3)过点A作AE⊥OB于点E.在Rt△OAE中,AE2=OA2﹣OE2=1﹣x2,在Rt△BAE中,AB2=AE2+BE2,∴其中﹣1≤x≤1.【题目点拨】属于圆的综合题,考查直线和圆的位置关系,勾股定理,三角形的面积公式等,注意数形结合思想在解题中的应用.23、(1)甲选择A部电影的概率为;(2)甲、乙、丙3人选择同一部电影的概率为.【解题分析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.【题目详解】(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P=,答:甲选择A部电影的概率为;(2)甲、乙、丙3人选择电影情况如图:由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,∴甲、乙、丙3人选择同一部电影的概率P=,答:甲、乙、丙3人选择同一部电影的概率为.【题目点拨】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.24、2.6cm【分析】先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.【题目详解】解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古乌兰察布市集宁区第一中学2025届物理高一第二学期期末质量检测模拟试题含解析
- 贵州省贵阳市清镇北大培文学校2025年物理高二第二学期期末质量跟踪监视试题含解析
- 冬青树介绍教学课件
- 2025届江苏省东台市创新学校物理高二下期末经典试题含解析
- 宣传培训课件
- 四川省泸县一中2025年物理高一下期末学业质量监测试题含解析
- 四川省会理一中2025年高二物理第二学期期末达标测试试题含解析
- 2025年度道路标线施工环境保护与恢复合同范本
- 二零二五年度矿产原料采购国际运输合同
- 二零二五年高端电子产品区域代理销售合同
- QC小组活动记录【范本模板】
- JJF 1334-2012混凝土裂缝宽度及深度测量仪校准规范
- GB/T 3683-2011橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
- GB/T 3003-2017耐火纤维及制品
- GB/T 1094.1-2013电力变压器第1部分:总则
- 二维动画课件
- 经济责任审计报告
- 五年级语文上册各单元作文范文
- 贵港市国有建设用地改变土地使用条件方案
- 部编人教版八年级上册历史全册课件
- 卡特CAT3406C发动机中文培训
评论
0/150
提交评论