版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
●应用基本组成规则进行分析的关键是恰当地选取基础、体系中的杆件或可判别为几何不变的部分作为刚片,应用规则扩大其范围,如能扩大至整个体系,则体系为几何不变的;如不能的话,则应把体系简化成二至三个刚片,再应用规则进行分析。
3.3几何组成分析举例●应用基本组成规则进行分析的关键是恰当地●体系中如有二元体,则先将其逐一撤除,以使分析简化。●若体系与基础是按两刚片规则联结时,则可先撤去这些支座链杆,只分析体系内部杆件的几何组成性质。●体系中如有二元体,则先将其逐一撤除,以使分析简化。【例3.1】试对图示体系进行几何组成分析。【例3.1】试对图示体系进行几何组成分析。【解】体系与基础用不全交于一点也不全平行的三根链杆相联,符合两刚片联结规则,先撤去这些支座链杆,只分析体系内部的几何组成。ACDFGEB【解】体系与基础用不全交于一点也不全平行的三任选铰结三角形,例如ABC作为刚片,依次增加二元体B-D-C、B-E-D、D-F-E和E-G-F,根据加减二元体规则,可见体系是几何不变的,且无多余约束。ACDFGEBACDFGEB任选铰结三角形,例如ABC作为刚片,依次增加当然,也可用依次拆除二元体的方式进行,最后剩下刚片ABC,同样得出该体系是无多余约束的几何不变体系。ACDFGEB当然,也可用依次拆除二元体的方式进行,最后剩【例3.2】试对图示体系进行几何组成分析。ACDEB【例3.2】试对图示体系进行几何组成分析。ACDEB【解】本题有六根支座链杆,应与基础一起作为一个整体来考虑。先选取基础为刚片Ⅰ,杆AB作为另一刚片Ⅱ,该两刚片由三根链杆相联,符合两刚片联结规则。ACDEBIII【解】本题有六根支座链杆,应与基础一起作为Ⅰ和Ⅱ组成一个大的刚片,称为刚片Ⅲ,再取杆CD为刚片Ⅳ,它与刚片Ⅲ之间用杆BC(链杆)和两根支座链杆相联,符合两刚片联结规则,组成一个更大的刚片。ACDEⅣⅢBⅠ和Ⅱ组成一个大的刚片,称为刚片Ⅲ,再取杆CD为刚片Ⅳ,它与最后将杆DE和E处的支座链杆作为二元体加于这个更大的刚片上,组成整个体系。因此,整个体系是无多余约束的几何不变体系。ACDEBⅤ最后将杆DE和E处的支座链杆作为二元体加于这个更大的刚片上,ACDEBIIIACDEBⅣⅢACDEBⅤ本例小结ACDEBIIIACDEBⅣⅢACDEBⅤ本例小结【例3.3】试对图示体系进行几何组成分析。ABCDE【例3.3】试对图示体系进行几何组成分析。ABCDE【解】本题有四根支座链杆,应与基础一起作为一个整体来考虑。可将ABD部分作为刚片Ⅰ,BCE部分作为刚片Ⅱ。另外,取基础作为刚片Ⅲ。ABCDEIIIIII【解】本题有四根支座链杆,应与基础一起作为一个刚片Ⅰ与刚片Ⅱ由铰B相联,刚片Ⅰ与刚片Ⅲ由两根链杆相联,其延长线交于虚铰O1,刚片Ⅱ与刚片Ⅲ由两根链杆相联,其延长线交于虚铰O2。因三个铰B、O1、O2恰在同一直线上,故体系为瞬变体系。ABCDEIIIIIIO1O2刚片Ⅰ与刚片Ⅱ由铰B相联,刚片Ⅰ与刚片Ⅲ由ABCDEIIIIIIO1O2ABCDE本例小结ABCDEIIIIIIO1O2ABCDE本例小结【例3.4】试对图示体系进行几何组成分析。ACDFGEBHH【例3.4】试对图示体系进行几何组成分析。ACDFGEBH【解】本题有四根支座链杆,应与基础一起作为一个整体来考虑。先选取基础为刚片。杆AB为另一刚片,该二刚片由三根链杆相联,符合二刚片联结规则,组成一个大的刚片。ACDFGEBHIIIEH【解】本题有四根支座链杆,应与基础一起作为一个依次增加由杆AD和D处支座链杆组成的二元体,以及由杆CD和杆CB组成的二元体。这样形成一个更大的刚片,称为刚片Ⅰ。ACDFGEBHIIIEH依次增加由杆AD和D处支座链杆组成的二元体,以及再选取铰结三角形EFG为刚片,增加二元体E-H-G,形成刚片Ⅱ。ACDFGEBHIIIEHO再选取铰结三角形EFG为刚片,增加二元体E-H-G,形成刚刚片Ⅰ与刚片Ⅱ之间由四根链杆相联,但不管选择其中哪三根链杆,它们都相交于一点O,因此体系为瞬变体系。ACDFGEBHIIIEHO刚片Ⅰ与刚片Ⅱ之间由四根链杆相联,但不管选择其中哪三根链杆ACDFGEBHIIIEHO本例小结ACDFGEBHIIIEHO本例小结【例3.5】试对图示体系进行几何组成分析。ADBC【例3.5】试对图示体系进行几何组成分析。ADBC【解】本题有六根支座链杆,应与基础一起作为一个整体来考虑。先选取基础为一刚片Ⅰ,杆AD和杆BD为另两个刚片Ⅱ、Ⅲ,此三个刚片由铰A、B、D相联,符合三刚片联结规则,组成一个大刚片,称为刚片Ⅳ。ADBCIIIIIIⅣ【解】本题有六根支座链杆,应与基础一起作为一个再选取杆CD为刚片Ⅴ,刚片Ⅳ和刚片Ⅴ之间由铰D和C处二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度酒店消防系统设备更新与优化合同3篇
- 2025年度私人承包数据中心节能减排建筑合同范本3篇
- 2025年教育培训机构销售居间代理协议3篇
- 2025年度个人股份质押合同标准范本4篇
- 2025年度个人二手车转让协议书(全新升级版)3篇
- 美容院消防安全责任及管理协议书(二零二五年度)4篇
- 湿地湖施工方案
- 毕业答辩指导模板
- 2025年度个人装修借款合同答辩状编制指南4篇
- 2024年中级经济师考试题库含答案(能力提升)
- OQC培训资料教学课件
- 2024年8月CCAA国家注册审核员OHSMS职业健康安全管理体系基础知识考试题目含解析
- 体育赛事组织与实施操作手册
- 2024年浙江省公务员考试结构化面试真题试题试卷答案解析
- 2023年航空公司招聘:机场安检员基础知识试题(附答案)
- 皮肤储存新技术及临床应用
- 外研版七年级英语上册《阅读理解》专项练习题(含答案)
- 《现在完成时》语法复习课件(共44张-)
- 二年级下册语文《第3单元 口语交际:长大以后做什么》课件
- 2024年辽宁石化职业技术学院单招职业适应性测试题库必考题
- 上海市复旦大学附中2024届高考冲刺模拟数学试题含解析
评论
0/150
提交评论