envi遥感图像监督分类与非监督分类_第1页
envi遥感图像监督分类与非监督分类_第2页
envi遥感图像监督分类与非监督分类_第3页
envi遥感图像监督分类与非监督分类_第4页
envi遥感图像监督分类与非监督分类_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实用文案实用文案标准文档标准文档envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别

像元的过程。它就是在分类之前通过目视判读和野外调查, 对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。遥感影像的监督分类一般包括以下6个步骤,如下图所示:类别定义/特征判别.样本选择.最小距离分类器选择神经网络支持向址机最小距离分类器选择神经网络支持向址机其他.於像分类'其他.分类右处理.结果验旺图1丄监看分妾西赛详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TMBand5,G:TMBand4,B:TMBand3波段组合显示。通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。第二步:样本选择在图层管理器LayerManager中,can_tmr.img图层上右键,选择"NewRegionOfInterest",打开RegionofInterest(ROI)Tool面板,下面学习利用选择样本。1)在RegionofInterest(ROI)Tool 面板上,设置以下参数:ROIName:林地ROIColor:S2.1RegionMInterest(ROI)TooI面板上设置样本参数2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择CompleteandAcceptPolygon ,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本。注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择

Editrecord是修改样本,点击Deleterecord是删除样本。2、 一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。3、如果不小心关闭了RegionofInterest(ROI)Tool面板,可在图层管理器LayerManager上的某一类样本(感兴趣区)双击鼠标。(2)在图像上右键选择NewROI,或者在RegionofInterest(ROI)Tool面板上,选择工具。重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本;(3) 如下图为选好好的样本。■■JJJJ-JJJ-JJJJJ-J匸7mh■円I ▲,■J^44;F ■CJHrihnIAlli■IMHDWrilSLMIJJJJ-JJJ-JJJJJ-J匸7mh■円I ▲,■J^44;F ■CJHrihnIAlli■IMHDWrilSLMIJhWj|lf■屛科J 4a?—」teihLilMMllM*IrM^11a■IihwCvtif|iZ■■l|Hmihfel・-Han忡I.bilf-iA■IF|MaMi・A歸Vi'Ibu-htH'm-HarrbJSti*rpn-wrl>:IrU aBTsrrTr--□ bMf■U.mbiiLTS・亠】UFaWlrftMi?■Bl'l-V■*fte-W.r!l'i"Wll|iWPfWG|«"Ib!1tjlKlinn|J«rri.;&■■■«*■!■*r*|a■-圏2.对I隔样本的选择(4)计算样本的可分离性。在RegionofInterest(ROI)Tool面板上,选择Option>ComputeROISeparability,在ChooseROIs面板,将几类样本都打勾,点击OK;(5) 表示各个样本类型之间的可分离性,用Jeffries-Matusita,TransformedDivergenee 参数表示,这两个参数的值在0~2.0之间,大于1.9

说明样本之间可分离性好,属于合格样本;小于 1.8,需要编辑样本或者重新选择样本;小于1,考虑将两类样本合成一类样本。FileFile匚4茸农讯・,丄山日ROINaa#(J«f[ri»s^M&tu«itarTra.nsfQr*sdDiv#rgwics)?S(J50^571W2C241)(1 柑1Z192S19&&&)孕9弓Ed?丄。1.9«?367&)W5«6542OaOOOOOD)91&2I6240199530391)也也也也IthJJJJJTm单糠沙真95.05I09C71.99720241)u9935123?19^9M9e<)576616637200000000)??9fc7328200000009)W6S222i.OOOCCODO)也也怛£^4JJJJwvw妆其也也ft也也也JJJJJJT(1&75US12(19V3U237(1B701»646(1.54053175(15>0HO3119241^66^)1沖刑柘酮:'1928«S024)1.97t7CG2j)l.W?$639)坪迪林地(1W6C7161W?5675)褂地(19766ifi6372.00000000)燮地/■駅(1.Q7010&4&192&U024J沙地.(l.Bl$H2G4丄沁225帕)武他(1賂勺勺初"200000009)(1貯9冊E542.00000000)(19«fc732A2.00000000)R本(1940E3172197t70€22)(1Sn<3;&*130Z0150&)f2oftoocoao2ooGccoa^)®阻a也也jJ1J(1®阻a也也jJ1J(1:(1^162^240 1眄舁0阳】)3OOOCCOU5):(1?^enO3LI沖彗施羽】弓站册200000009)OaOOAOOO2.OO0OCOOO)reitSeparation(leasttonmt).rt地ond第爐rft水-】訂列翎“理地andfcZl也-1819^3284盛迪丿鯉*andIRU也-197010£4&书世wd草撻”杠木-1?0351237仲地and墓您-1^162^240岐锻/曜栄血占炒胞-191053172ttigand料地-1§SG£d9G?!R地andt»3&-1?7t6«&37e^xfflX«nd其恤-1998U03LIf地and跟地-1勺射图空样本可分醫性计算隈義注:1、在图层管理器LayerManager中,可以选择需要修改的训练样本。

2、在RegionofInterest(ROI)Tool面板上,选择Options>Merge(Union/lntersection)ROIs ,在MergeROIs面板中,选择需要合并的类别,勾选DeleteInputROIs。图2.4MergeROIs面板在图层管理器中,选择Regionofinterest ,点击右键,saveas,保存为.xml格式的样本文件。注:1、早期版本的感兴趣文件格式为.roi,新版本的为.xml,新版本完全兼容.roi文件,在RegionofInterest(ROI)Tool 面板上,选择File>Open打开.xml或.roi文件。2、新版本的.xml样本文件(感兴趣区文件)可以通过,File>Export>ExporttoClassic菜单保存为.roi文件。第三步:分类器选择根据分类的复杂度、精度需求等确定哪一种分类器。目前 ENVI的监督分类可分为基于传统统计分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式识别,包括支持向量机、模糊分类等,针对高光谱有波谱角(SAM),光谱信息散度,二进制编码。下面是几种分类器的简单描述。?平行六面体(Parallelepiped)根据训练样本的亮度值形成一个n维的平行六面体数据空间,其他像元的光谱值如果落在平行六面体任何一个训练样本所对应的区域, 就被划分其对应的类别中。?最小距离(MinimumDistanee)利用训练样本数据计算出每一类的均值向量和标准差向量, 然后以均值向量作为该类在特征空间中的中心位置,计算输入图像中每个像元到各类中心的距离,至拠一类中心的距离最小,该像元就归入到哪一类。?马氏距离(MahalanobisDistanee)计算输入图像到各训练样本的协方差距离(一种有效的计算两个未知样本集的相似度的方法),最终技术协方差距离最小的,即为此类别。?最大似然(MaximumLikelihood)假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。?神经网络(NeuralNet)指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元, 用算法实现人脑的识别、记忆、思考过程。?支持向量机(SupportVectorMachine)支持向量机分类(SupportVectorMachine 或SVM)是一种建立在统计学习理论(StatisticalLearningTheory 或SLT)基础上的机器学习方法。SVM可以自动寻找那些对分类有较大区分能力的支持向量, 由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。?波谱角(SpectralAngleMapper )它是在N维空间将像元与参照波谱进行匹配,通过计算波谱间的相似度,之后对波谱之间相似度进行角度的对比,较小的角度表示更大的相似度。影像分类

基于传统统计分析的分类方法参数设置比较简单,在Toolbox/Classification/SupervisedClassification 能找到相应的分类方法。这里选择支持向量机分类方法。在 toolbox中选择/Classification/SupervisedClassification/SupportVectorMachineClassification ,选择待分类影像,点击OK,按照默认设置参数输出分类结果。图2.5支持向量机分类器参数设置

图2.6支持向量机分类结果第五步:分类后处理包括更改类别颜色、分类后统计、小斑块处理、栅矢转换等,这部分专门有节课讲解。在此不做叙述。第六步:精度验证对分类结果进行评价,确定分类的精度和可靠性。有两种方式用于精度验证:是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较抽象。真实参考源可以使用两种方式:一是标准的分类图,二是选择的感兴趣区(验证样本区)。两种方式的选择都可以通过主菜单->Classification->PostClassification->ConfusionMatrix 或者ROCCurves来选择。真实的感兴趣区验证样本的选择可以是在高分辨率影像上选择,也可以是野外实地调查获取,原则是获取的类别参考源的真实性。由于没有更高分辨率的数据源,本例中就把原分类的TM影像当作是高分辨率影像,在上面进行目视解译得到真实参考源。(1)在DataManager中,分类样本上右键选择Close,将分类样本从软件中移除(2) 直接利用ROI工具,跟分类样本选择的方法一样,即重复第二步,在TM图上选择6类验证样本。注:可直接File>open,打开cantm-验证样本.roi。图2.7选择验证样本(3 )在Toolbox中,选择/Classification/PostClassification/ConfusionMatrixUsingGroundTruthROIs ,选择分类结果,软件会根据分类代码自动匹配,如不正确可以手动更改。点击 OK后选择报表的表示方法(像素和百分比),点击OK,就可以得到精度报表。图2.8验证操作面板CWJ4Itecui-iurjt■! 碎1■6UkappaCoshl^|4pnt*0栄Yyall.L-IHlTJt”=|丄...T■Ml••鋼川rf,f栄Yyall.L-IHlTJt”=|丄...T■Ml••鋼川rf,f■IjF-OTMTiKIlEiIrsxelaIFIBfll<&2.VC.-OA-*”□.itsflUfiilfri«blieil评渕WJ&-■ia■灌Ufiilfri«blieil评渕WJ&-■ia■灌*m:t空唯Tel«lUr<njadhKtt:Ir:xqUibi01]f"£hh+1*s_T-fi-_?o_os?nW}也。252fliG.■>1o232nzn-nh1]f"£hh+1*s_T-fi-_?o_os?nW}也。252fliG.■>1o232nzn-nhounY2Au-CD1G0mo--4Rmm*1Ja誥器4OM4OM助DD0000D旧CUnOneL«-[ku1i«]Flft.■心■和CUnOneL«-[ku1i«]Flft.■心■和LTJ1n4«.1^••■!D・h・spinD4&?A-OQn.Q伽eIt11w好113J4G应[亡5jOT5.7MK鉉IIMEH2■Ji博ntEK-HV^T17QJLS3应[亡5jOT5.7MK鉉IIMEH2■Ji博ntEK-HV^T17QJLS3家d-LrJfl踊Fbpb-DEJn&avlonCqms^fi;nn

CPmt好倔7^2iH4M7■才LMtH1041(Finla)”>环“ProdleeC«tIPw^tatjILli109QflIt3SfllM仲右1皿⑭PzodXc-cCP&ul补ZUKig4t2^l(Kmxan541/542J5UJU2・azm=口HuUPkMit]tt7U5&“KM"辭・々』】541r"5图2.9分类精度评价混淆矩阵F面对混淆矩阵中的几项评价指标进行说明:?总体分类精度等于被正确分类的像元总和除以总像元数。被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数, 如本次精度分类精度表中的OverallAccuracy=(1849/2346)78.8150% 。

?Kappa系数它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(XKK)的和,再减去某一类中真实参考像元数与该类中被分类像元总数之积之后, 再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元总数之积对所有类别求和的结果。护—E庇七出Kappa计算公式?错分误差指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为12/419=2.9%。?漏分误差指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。如在本例中的耕地类,有真实参考像元465个,其中462个正确分类,其余3个被错分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差为3/465=0.6%?制图精度是指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。如本例中林地有419个真实参考像元,其中265个正确分类,因此林地的制图精度是265/419=63.25% 。?用户精度是指正确分到A类的像元总数(对角线值)与分类器将整个影像的像元分为A类的像元总数(混淆矩阵中A类行的总和)比率。如本例中林地有265个正确分类,总共划分为林地的有277,所以林地的用户精度是265/277=95.67% 。注:监督分类中的样本选择和分类器的选择比较关键。 在样本选择时,为了更加清楚的查看地物类型,可以适当的对图像做一些增强处理,如主成分分析、最小噪声变换、波段组合等操作,便于样本的选择;分类器的选择需要根据数据源和影像的质量来选择,比如支持向量机对高分辨率、四个波段的影像效果比较好。非监督分类非监督分类:也称为聚类分析或点群分类。在多光谱图像中搜寻、定义其自然相似光谱集群的过程。它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱(或纹理)信息进行特征提取,再统计特征的差别来达到分类的目的, 最后对已分出的各个类别的实际属性进行确认。目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。遥感影像的非监督分类一般包括以下6个步骤:影像分析「J ISODATA分类器选择.R心礎沖 r-―其他卍影像分类类别定义/类别合并

分类后处理」

结杲验证「图16非监督分类操作流程目前非监督分类器比较常用的是 ISODATA、K-Mean和链状方法。ENVI包括了ISODATA和K-Mean方法。1、影像分析大体上判断主要地物的类别数量。一般监督分类设置分类数目比最终分类数量要多2-3倍为宜,这样有助于提高分类精度。本案例的数据源为ENVI自带的Landsattm5数据Can_tmr.img,类别分为:林地、草地/灌木、耕地、裸地、沙地、其他六类。确定在非监督分类中的类别数为15。2、分类器选择ISODATA(IterativeSelf-OrgnizingDataAnalysizeTechnique )重复自组织数据分析技术,计算数据空间中均匀分布的类均值, 然后用最小距离技术将剩余像元进行迭代聚合,每次迭代都重新计算均值,且根据所得的新均值,对像元进行再分类。K-Means使用了聚类分析方法,随机地查找聚类簇的聚类相似度相近,即中心位置,是利用各聚类中对象的均值所获得一个“中心对象” (引力中心)来进行计算的,然后迭代地重新配置他们,完成分类过程。3、影像分类打开ENVI,选择主菜单->Classification->Unsupervised->lsoData 或者K-Means。这里选择IsoData,在选择文件时候,可以设置空间或者光谱裁剪区。这里选择软件自带的Can_tmr.img,按默认设置,之后跳出参数设置,如图2。这里主要设置类别数目(NumberofClasses)为5-15、迭代次数(MaximumIteration )为10。其他选项按照默认设置,输出文件。

图17ISODATA非监督分类参数设置图18ISODATA分类结果4、类别定义/类别合并(1)类别定义在display中显示原始影像,在display->overlay->classification ,选择ISODATA分类结果,如图19所示,在InteractiveClassTool面板中,可以选择各个分类结果的显示。

ActI**Cl■的r%rrIhi■申|.工环ActI**Cl■的r%rrIhi■申|.工环Itdi。务二k曰七口肛匚名口/今FP/iitH图19影像与分类结果的叠加InteractiveClassTool面板中,选择Option->Editclasscolors/names通过目视或者其他方式识别分类结果,填写相应的类型名称和颜色嘗口轨曲ColuiBypEditinfi耐t|OKCamtlIktvi[|图20类别定义如图21所示为最终的结果。

曾fnieraciiveClassToolsee"FileEdiIGpti*oxu-KelpActiveCl吨■炭分类AI-On■厂g■^5—厂On■—Dk■厂Obi~On硬On■應熔皿木”厂g常晦rOn|檬速rOn■[imarOnrOn.|0ST-厂On厂OkJ il图21类别定义结果在类别定义时候,可以利用Mode:PolygonAddtoClass、Edit->ModePolygonDeletefromClass或者Setdeleteclassvalue 把很明显的错误分类结果并入或者删除。(2)类别合并选择主菜单->Classification->PostClassification->CombineClasses <把同一类的类别合并成一类,如图22所示。在点击ok后,需要选择输出文件和RemoveEmptyClass选择YES,可以得到结果。彎Cnahtnf:ClnxsfixS*14ctIr.put匚木/«S*14ctIr.put匚木/«地输地地地

n草禅將JS«14ctOutputCltlEOutputClttc耳出丿灌木AddCo^b4iktti4Ei->->->->->->->->->->254^3韭地琨地IT浮律n詁QKCutc«l.~*

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论