版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省乐至县联考数学九年级第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.62.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上3.以下四个图形标志中,其中是中心对称图形的是()A. B. C. D.4.下列事件是必然事件的是()A.任意购买一张电影票,座号是“7排8号” B.射击运动员射击一次,恰好命中靶心C.抛掷一枚图钉,钉尖触地 D.13名同学中,至少2人出生的月份相同5.如图,在中,,,平分,是的中点,若,则的长为()A.4 B. C. D.6.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是()A. B. C. D.7.从﹣1,0,1三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率为()A. B. C. D.8.若∽,,,,则的长为()A.4 B.5 C.6 D.79.如图,BD是⊙O的直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°10.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于()A. B. C. D.11.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°12.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有()A.最大值 B.最小值 C.最大值= D.最小值=二、填空题(每题4分,共24分)13.如图,在平面直角坐标系xOy中,点A在函数y=(x>0)的图象上,AC⊥x轴于点C,连接OA,则△OAC面积为_____.14.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.15.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.16.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.17.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.18.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An,将抛物线y=x2沿直线L:y=x向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,则顶点M2020的坐标为_____.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AB⊥AD,=,对角线AC与BD交于点O,AC=10,∠ABD=∠ACB,点E在CB延长线上,且AE=AC.(1)求证:△AEB∽△BCO;(2)当AE∥BD时,求AO的长.20.(8分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.21.(8分)为培养学生良好的学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,请根据图表中提供的信息,解答下列问题:整理情况频数频率非常好0.21较好70一般不好36(1)本次抽样共调查了多少名学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名.22.(10分)如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求F点坐标;(3)直线DE上是否存在点P到直线AD的距离与到x轴的距离相等?若存在,请求出点P,若不存在,请说明理由.23.(10分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)24.(10分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.25.(12分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于点A(m,1)与点B(﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x为何值时,k1x+b﹣<0;(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求点P的坐标.26.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围;(2)若DM:DB=3:5,则AN与BN的数量关系是.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题解析:∵OC⊥AB,OC过圆心O点,在中,由勾股定理得:故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.2、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【题目详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【分析】根据中心对称图形的概念对各选项逐一分析判断即可得答案.【题目详解】A、不是中心对称图形,故本选项不合题意,B、不是中心对称图形,故本选项不合题意,C、是中心对称图形,故本选项符合题意,D、不是中心对称图形,故本选项不合题意.故选C.【题目点拨】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、D【分析】根据必然事件的定义即可得出答案.【题目详解】ABC均为随机事件,D是必然事件,故答案选择D.【题目点拨】本题考查的是必然事件的定义:一定会发生的事情.5、B【分析】首先证明,然后再根据在直角三角形中,斜边上的中线等于斜边的一半,即.【题目详解】解:设则,在中,即解得为中点,故选B【题目点拨】本题主要考查了角平分线的性质、直角三角形斜边上的中线,含30度角的直角三角形.6、A【解题分析】根据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【题目详解】从正面看到的平面图形是:,故选A.【题目点拨】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.7、C【分析】列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【题目详解】解:根据题意列表如下:﹣110﹣1﹣﹣﹣(1,﹣1)(0,﹣1)1(﹣1,1)﹣﹣﹣(0,1)0(﹣1,0)(1,0)﹣﹣﹣所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率=;故选:C.【题目点拨】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了点的坐标特征.8、C【分析】利用相似三角形的性质,列出比例式即可解决问题.【题目详解】解:∵△ABC∽△DEF,,,,∴,∴,∴EF=6.故选C.【题目点拨】本题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的对应边成比例,属于中考基础题.9、D【解题分析】试题分析:直接根据圆周角定理求解.连结OC,如图,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故选D.考点:圆周角定理.10、A【题目详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:,解得:a=1,经检验,a=1是原分式方程的解,故本题选A.11、C【分析】根据弧长公式,即可求解【题目详解】设圆心角是n度,根据题意得,解得:n=1.故选C【题目点拨】本题考查了弧长的有关计算.12、D【解题分析】解:由当时有最大值,得时,,,反比例函数解析式为,当时,图象位于第四象限,随的增大而增大,当时,最小值为故选D.二、填空题(每题4分,共24分)13、1【分析】根据反比例函数比例系数k的几何意义可得S△OAC=×2=1,再相加即可.【题目详解】解:∵函数y=(x>0)的图象经过点A,AC⊥x轴于点C,∴S△OAC=×2=1,故答案为1.【题目点拨】本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.14、【题目详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案为.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.15、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【题目详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.
故答案为:.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【题目详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【题目点拨】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.17、【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.【题目详解】连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=2,则tan∠ABC=,故答案为:.【题目点拨】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.18、(4039,4039)【分析】根据抛物线的解析式结合整数点的定义,找出点An的坐标为(n,n2),设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x-a)2+a,由点An的坐标利用待定系数法,即可求出a值,将其代入点Mn的坐标即可得出结论.【题目详解】∵抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…,An,…,∴点An的坐标为(n,n2).设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x﹣a)2+a,∵点An(n,n2)在抛物线y=(x﹣a)2+a上,∴n2=(n﹣a)2+a,解得:a=2n﹣1或a=0(舍去),∴Mn的坐标为(2n﹣1,2n﹣1),∴M2020的坐标为(4039,4039).故答案为:(4039,4039).【题目点拨】本题考查了二次函数图象与几何变换、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,根据点An的坐标利用待定系数法求出a值是解题的关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)根据等腰三角形的性质得到,等量代换得到,根据三角形的内角和和平角的性质得到,于是得到结论;(2)过作与,过作与,根据平行线的性质得到,,推出,求得,,得到,根据相似三角形的性质得到,于是得到,根据平行线分线段成比例定理即可得到结论.【题目详解】解:(1),,,,,,,在△AEB和△BCO中,,;(2)过作于,过作于,,,,,,,,,,,,,,,,,,,,,,,,,,,,.【题目点拨】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,等腰三角形的性质,正确的作出辅助线是解题的关键.20、(1)证明见解析;(2)2.【解题分析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵∥,∴∵平分∴,∴∴又∵∴又∵∥,∴四边形是平行四边形又∵∴是菱形(2)解:∵四边形是菱形,对角线、交于点.∴.,,∴.在中,.∴.∵,∴.在中,.为中点.∴.点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.21、(1)200人;(2)见详解;(3)840人【分析】(1)根据较好的部分对应的圆心角即可求得对应的百分比,即可求得总数,然后根据频率=频数÷总数即可求解;(2)利用公式:频率=频数÷总数即可求解;(3)利用总人数乘以对应的频率即可.【题目详解】解:(1)较好的所占的比例是:,则本次抽样共调查的人数是:(人);(2)非常好的频数是:(人),一般的频数是:(人),较好的频率是:,一般的频率是:,不好的频率是:,故补全表格如下所示:整理情况频数频率非常好420.21较好700.35一般520.26不好360.18(3)该校学生整理错题集情况“非常好”和“较好”的学生的频率为0.21+0.35=0.56,该校学生整理错题集情况“非常好”和“较好”的学生一共约有(人).【题目点拨】本题考查的是扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)y=﹣x2﹣2x+3,D(﹣1,4);(2)F点坐标为(﹣,);(3)存在,满足条件的P点坐标为(﹣1,﹣1)或(﹣1,﹣﹣1)【分析】(1)把代入得得到关于的方程组,然后解方程组即可求出抛物线解析式,再把解析式配成顶点式可得D点坐标;
(2)如图2,作FQ∥y轴交AC于Q,先利用待定系数法求出直线AC的解析式,设,则,则可表示出,,根据三角形面积公式结合二次函数的性质即可求解;
(3)设,根据得到,最后分两种情况求解即可得出结论.【题目详解】解:(1)把代入得,∴,∴抛物线的解析式为:,∵,∴点D的坐标为:;(2)如图2,作FQ∥y轴交AC于Q,设直线AC的解析式为,把代入,得,解得,∴直线AC的解析式为:.设,则,∴,∴=,当时,△FAC的面积最大,此时F点坐标为(﹣,),(3)存在.∵D(﹣1,4),A(﹣3,0),E(﹣1,0),∴,设,则,,如图3,∵∠HDP=∠EDA,∠DHP=∠DEA=90°∴,∴,∴,当t>0时,,解得:,当t<0时,,解得:,综上所述,满足条件的P点坐标为或【题目点拨】本题是二次函数综合题:主要考查了二次函数图象上点的坐标特征、二次函数的性质相似三角形的判定和性质,会利用待定系数法求函数解析式,判断出是解本题的关键.23、8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【题目详解】解:如图:,∴,∴木杆折断之前高度故答案为m【题目点拨】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.24、(1)m=1,k=8,n=1;(2)△ABC的面积为1.【解题分析】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=1,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=1,即m=1,则点A的坐标为(1,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=1;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=AC•BE=×1×2=1,即△ABC的面积为1.考点:反比例函数与一次函数的交点问题.25、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)点P的坐标为或(1,4)或(2,2)【分析】(1)把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,1)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A、B的坐标根据图象可求得答案;(3)设点P的坐标为,则C(m,m﹣3),由△POC的面积为3,得到△POC的面积,求得m的值,即可求得P点的坐标.【题目详解】解:(1)将B(﹣1,﹣4)代入得:k2=4∴反比例函数的解析式为,将点A(m,1)代入y2得,解得m=4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度企业财务咨询与管理合同(2024版)2篇
- 2024年度商务产业园委托运营协议之争议解决方式3篇
- 二零二四年度珠宝首饰定制合同范本
- 全新中介2024年度化妆品代工合同3篇
- 二零二四年度农业科技项目研究与推广合同2篇
- 银行业的移动支付之路
- 2024年度智能物流系统研发与应用合同协议书3篇
- 2024年度学校食堂供水设施改造合同2篇
- 脓涕的临床护理
- 《加成反应完》课件
- 2024秋期国家开放大学《国际法》一平台在线形考(形考任务1至5)试题及答案
- HG+20231-2014化学工业建设项目试车规范
- HG-T 2006-2022 热固性和热塑性粉末涂料
- 综合英语智慧树知到答案章节测试2023年喀什大学
- 幼儿园绘本故事:《神奇雨伞店》 课件
- 法检商品目录
- 市场拓展奖励办法
- 居住区规划设计PPT课件
- 当前住房公积金管理中存在的问题和解决建议
- 光伏土建工程监理实施细则
- 药品GMP自检检查表
评论
0/150
提交评论