![湖南省永州市新田县2024届九年级数学第一学期期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view/3d50aec89d9d02b172b18558ddf60fae/3d50aec89d9d02b172b18558ddf60fae1.gif)
![湖南省永州市新田县2024届九年级数学第一学期期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view/3d50aec89d9d02b172b18558ddf60fae/3d50aec89d9d02b172b18558ddf60fae2.gif)
![湖南省永州市新田县2024届九年级数学第一学期期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view/3d50aec89d9d02b172b18558ddf60fae/3d50aec89d9d02b172b18558ddf60fae3.gif)
![湖南省永州市新田县2024届九年级数学第一学期期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view/3d50aec89d9d02b172b18558ddf60fae/3d50aec89d9d02b172b18558ddf60fae4.gif)
![湖南省永州市新田县2024届九年级数学第一学期期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view/3d50aec89d9d02b172b18558ddf60fae/3d50aec89d9d02b172b18558ddf60fae5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市新田县2024届九年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.关于抛物线,下列说法错误的是A.开口向上 B.对称轴是y轴C.函数有最大值 D.当x>0时,函数y随x的增大而增大2.已知正方形的边长为4cm,则其对角线长是()A.8cm B.16cm C.32cm D.cm3.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C. D.124.下列事件中,属于必然事件的是()A.小明买彩票中奖 B.投掷一枚质地均匀的骰子,掷得的点数是奇数C.等腰三角形的两个底角相等 D.是实数,5.把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是()A. B.C. D.6.下列数是无理数的是()A. B. C. D.7.函数与函数在同一坐标系中的大致图象是()A. B. C. D.8.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元 B.8.45×103亿元 C.8.45×104亿元 D.84.5×102亿元9.如图,两点在反比例函数的图象上,两点在反比例函数的图象上,轴于点,轴于点,,则的值是()A.2 B.3 C.4 D.610.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8二、填空题(每小题3分,共24分)11.如图,中,,则__________.12.如图,在边长为的正方形中,点为靠近点的四等分点,点为中点,将沿翻折得到连接则点到所在直线距离为________________.13.连接三角形各边中点所得的三角形面积与原三角形面积之比为:.14.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为__________.15.的半径为,、是的两条弦,.,,则和之间的距离为______16.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.17.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.18.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.三、解答题(共66分)19.(10分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.(1)求的值和点的坐标;(2)如果点为轴上的一点,且∠直接写出点A的坐标.20.(6分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元.市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种布鞋每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?21.(6分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E(1)求证:DE是⊙O的切线.(2)求DE的长.22.(8分)某学校举行冬季“趣味体育运动会”,在一个箱内装入只有标号不同的三颗实心球,标号分别为1,2,3.每次随机取出一颗实心球,记下标号作为得分,再将实心球放回箱内。小明从箱内取球两次,若两次得分的总分不小于5分,请用画树状图或列表的方法,求发生“两次取球得分的总分不小于5分”情况的概率.23.(8分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.24.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.25.(10分)学生会要举办一个校园书画艺术展览会,为国庆献礼,小华和小刚准备将长AD为400cm,宽AB为130cm的矩形作品四周镶上彩色纸边装饰,如图所示,两人在设计时要求内外两个矩形相似,矩形作品面积是总面积的,他们一致认为上下彩色纸边要等宽,左右彩色纸边要等宽,这样效果最好,请你帮助他们设计彩色纸边宽度.26.(10分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【题目详解】A.因为a=2>0,所以开口向上,正确;B.对称轴是y轴,正确;C.当x=0时,函数有最小值0,错误;D.当x>0时,y随x增大而增大,正确;故选:C【题目点拨】考查二次函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.2、D【分析】作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【题目详解】解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以对角线的长:AC=4cm.故选D.3、A【解题分析】利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.【题目详解】连接DO,EO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=3,AF=AE=4又∵∠C=90°,∴四边形OECD是矩形,又∵EO=DO,∴矩形OECD是正方形,设EO=x,则EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,∴BC=3,AC=4,∴S△ABC=×3×4=6,故选A.【题目点拨】此题主要考查了三角形内切圆与内心,得出四边形OECF是正方形是解题关键.4、C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【题目详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.是实数,,是不可能事件;故选C.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【题目详解】解:抛物线y=-x1的顶点坐标为(0,0),
先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),
所以,平移后的抛物线的解析式为y=-(x+1)1-1.
故选:B.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.6、C【分析】根据无理数的定义进行判断即可.【题目详解】A.,有理数;B.,有理数;C.,无理数;D.,有理数;故答案为:C.【题目点拨】本题考查了无理数的问题,掌握无理数的定义是解题的关键.7、B【分析】根据函数与函数分别确定图象即可得出答案.【题目详解】∵,-2<0,∴图象经过二、四象限,∵函数中系数小于0,∴图象在一、三象限.故选:B.【题目点拨】此题主要考查了从图象上把握有用的条件,准确确定图象位置,正确记忆一次函数与反比例函数的区别是解决问题的关键.8、B【解题分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).8450一共4位,从而8450=8.45×2.故选B.考点:科学记数法.9、D【分析】连接OA、OB、OC、OD,由反比例函数的性质得到,,结合两式即可得到答案.【题目详解】连接OA、OB、OC、OD,由题意得,,∵,∴,∵,∴,∴,∵AC=3,BD=2,EF=5,∴解得OE=2,∴,故选:D.【题目点拨】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k的几何意义是解题的关键.10、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.二、填空题(每小题3分,共24分)11、17【解题分析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.12、【分析】延长交BC于点M,连接FM,延长交DA的延长线于点P,作DN⊥CP,先证明∽,利用相似的性质求出,然后证明∽,利用相似的性质求出EP,从而得到DP的长,再利用勾股定理求出CP的长,最后利用等面积法计算DN即可.【题目详解】如图,延长交BC于点M,连接FM,延长交DA的延长线于点P,作DN⊥CP,由题可得,,,∴,∵F为AB中点,∴,又∵FM=FM,∴≌(HL),∴,,由折叠可知,,∴,又∵∴,∴∽,∴,∵AD=4,E为四等分点,∴,∴,∴,∴,∵,∴,,∴∽,∴,即,∴EP=6,∴DP=EP+DE=7,在中,,∵,∴.故答案为:.【题目点拨】本题考查了折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及等面积法等知识,较为综合,难度较大,重点在于作辅助线构造全等或相似三角形.13、1:1【分析】证出DE、EF、DF是△ABC的中位线,由三角形中位线定理得出,证出△DEF∽△CBA,由相似三角形的面积比等于相似比的平方即可得出结果.【题目详解】解:如图所示:∵D、E、F分别AB、AC、BC的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面积:△CBA的面积=()2=.故答案为1:1.考点:三角形中位线定理.14、【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.【题目详解】解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)=;故答案为:.【题目点拨】此题考查了概率公式,要明确:如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)=.15、7cm或17cm【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=12,CF=5,然后根据勾股定理,在Rt△OAE中计算出OE=5,在Rt△OCF中计算出OF=12,再分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF−OE.【题目详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=12,CF=DF=CD=5,在Rt△OAE中,∵OA=13,AE=12,∴OE=,在Rt△OCF中,∵OC=13,CF=5,∴OF=,当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;当圆心O不在AB与CD之间时,EF=OF−OE=12−5=7;即AB和CD之间的距离为7cm或17cm.故答案为:7cm或17cm.【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和分类讨论的数学思想.16、1【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【题目详解】∵抛物线与轴交于点、,∴当时,则,解得或,则,的坐标分别为(-3,0),(1,0),∴的长度为4,从,两个部分顶点分别向下作垂线交轴于、两点.根据中心对称的性质,轴下方部分可以沿对称轴平均分成两部分补到与,如图所示,阴影部分转化为矩形,根据对称性,可得,则,利用配方法可得,则顶点坐标为(-1,4),即阴影部分的高为4,.故答案为:1.【题目点拨】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.17、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【题目详解】解:连接OC,
∵CE是⊙O的切线,
∴∠OCE=90°,
∵∠E=20°,
∴∠COD=70°,
∵OC=OD,∴∠ABC=180°-55°=125°,
连接AC,过点A做AF⊥CE交CE于点F,
设OC=OD=r,
∴OE=8+r,
在Rt△OEC中,
由勾股定理可知:(8+r)2=r2+122,
∴r=5,
∵OC∥AF
∴△OCE∽△AEF,故答案为:【题目点拨】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.18、【分析】本题可利用三角形面积×底×高,直接列式求解.【题目详解】∵直角三角形两直角边可作为三角形面积公式中的底和高,∴该直角三角形面积.故填:.【题目点拨】本题考查三角形面积公式以及二次根式的运算,难度较低,注意计算仔细即可.三、解答题(共66分)19、(1)k=1,Q(-1,-1).(2)【分析】(1)将点P代入直线中即可求出m的值,再将P点代入反比例函数中即可得出k的值,通过直线与反比例函数联立即可求出Q的坐标;(2)先求出PQ之间的距离,再利用直角三角形斜边的中线等于斜边的一半即可求出点A的坐标.【题目详解】解:(1)∵点(,)在直线上,∴.∵点(,)在上,∴.∴∵点为直线与的交点,∴解得∴点坐标为(,).(2)由勾股定理得∵∠∴∴(,0),(,0).【题目点拨】本题主要考查反比例函数与一次函数的综合,掌握待定系数法,勾股定理是解题的关键.20、(1)w=﹣x2+90x﹣1800;(2)这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是,225元【分析】(1)由题意根据每天的销售利润W=每天的销售量×每件产品的利润,即可列出w与x之间的函数解析式;(2)根据题意对w与x之间的函数解析式进行配方,即可求得答案.【题目详解】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225;答:这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是225元.【题目点拨】本题考查二次函数的应用,根据题意得到每天的销售利润的关系式是解决本题的关键以及利用配方法或公式法求得二次函数的最值问题是常用的解题方法.21、(1)详见解析;(2)4.【解题分析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.22、【分析】根据题意先画树状图展示所有9种等可能的结果数,再找出两次得分的总分不小于5分的结果数,然后根据概率公式求解.【题目详解】解:树状图如下:共有9种等可能的结果数,两次得分的总分不小于5分的结果数为3种,所以P=.【题目点拨】本题考查列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23、(1)①;②1.5;(2)①5;②、,、5.【解题分析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【题目详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半径为.如图3,当与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y,则OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半径为.如图4,当与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半径为5.综上所述,若与矩形的一边相切,为的半径,,,5.【题目点拨】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.24、(1)证明见解析;(2)15.【解题分析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年超净高纯试剂项目发展计划
- 2025年燃气掺混设备项目合作计划书
- 少年儿童文学奖作品征文
- 2025年牙科综合治疗机项目建议书
- 格林童话之灰姑娘的童话解读
- 办公IT设备采购说明及预算报告
- 小王子书中的成长读后感
- 3-tert-Butyl-4-methoxyphenol-Standard-生命科学试剂-MCE
- 教师年终总结动态
- 高中生职业规划讲座读后感
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 2024新版(北京版)三年级英语上册单词带音标
- 财务审计服务方案投标文件(技术方案)
- 养老服务机构复工复产实施方案复工复产安全生产方案
- 2024-2025学年小学科学六年级下册苏教版(2024)教学设计合集
- 9《黄山奇石》教学设计-2024-2025学年统编版语文二年级上册
- PP、PVC-风管制作安装施工作业指导书
- 新型智慧水利项目数字孪生工程解决方案
- 苏教版五年级上册脱式计算300道及答案
- 辽宁省沈阳市铁西区2025届初三最后一次模拟(I卷)数学试题含解析
- 英语完形填空练习题20篇
评论
0/150
提交评论