黑龙江省青龙山农场场直中学2024届数学九上期末联考模拟试题含解析_第1页
黑龙江省青龙山农场场直中学2024届数学九上期末联考模拟试题含解析_第2页
黑龙江省青龙山农场场直中学2024届数学九上期末联考模拟试题含解析_第3页
黑龙江省青龙山农场场直中学2024届数学九上期末联考模拟试题含解析_第4页
黑龙江省青龙山农场场直中学2024届数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省青龙山农场场直中学2024届数学九上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.2.如图,在中,,则的长度为A.1 B. C. D.3.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.根据以上作图过程及所作图形,下列结论中错误的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=4.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B.C. D.5.m是方程的一个根,且,则的值为()A. B.1 C. D.6.关于的一元二次方程有实数根,则满足()A. B.且 C.且 D.7.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3608.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.9.二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为()A. B. C. D.10.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或二、填空题(每小题3分,共24分)11.点A(1,-2)关于原点对称的点A1的坐标为________.12.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n=_____.13.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.14.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)15.若记表示任意实数的整数部分,例如:,,…,则(其中“+”“-”依次相间)的值为______.16.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.17.若方程的一个根,则的值是__________.18.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______;若将绕点顺时针旋转,则顶点所经过的路径长为__________.三、解答题(共66分)19.(10分)已知关于的方程(1)无论取任何实数,方程总有实数根吗?试做出判断并证明你的结论.(2)抛物线的图象与轴两个交点的横坐标均为整数,且也为正整数.若,是此抛物线上的两点,且,请结合函数图象确定实数的取值范围.20.(6分)如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)21.(6分)不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.22.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.23.(8分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.24.(8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.25.(10分)如图,已知,是一次函数与反比例函数图象的两个交点,轴于点,轴于点.(1)求一次函数的解析式及的值;(2)是线段上的一点,连结,若和的面积相等,求点的坐标.26.(10分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【题目详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【题目点拨】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.2、C【分析】根据已知条件得到,根据相似三角形的判定和性质可得,即可得到结论.【题目详解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,,∴,∴BC=4.故选:C.【题目点拨】本题考查了相似三角形的判定与性质,熟悉相似基本图形掌握相似三角形的判定与性质是解题关键.3、D【分析】由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论.【题目详解】由作法得CA=CB=CD=AB,故B正确;∴点B在以AD为直径的圆上,∴∠ABD=90°,故A正确;∴点C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正确;cosD=,故D错误,故选:D.【题目点拨】本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.4、D【分析】根据旋转的定义进行分析即可解答【题目详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.【题目点拨】本题考查了图纸旋转的性质,熟练掌握是解题的关键.5、A【解题分析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【题目详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,

∴m2+nm+m=0,

∴m(m+n+1)=0;

又∵m≠0,

∴m+n+1=0,

解得m+n=-1;

故选:A.【题目点拨】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.6、C【分析】根据一元二次方程有实数根得到△且,解不等式求出的取值范围即可.【题目详解】解:关于的一元二次方程有实数根,△且,△且,且.故选:.【题目点拨】本题考查了一元二次方程的根的判别式△:当△,方程有两个不相等的实数根;当△,方程有两个相等的实数根;当△,方程没有实数根.7、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【题目详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【题目点拨】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.8、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【题目详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【题目点拨】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.9、C【分析】由抛物线开口方向可得到a>0;由抛物线过原点得c=0;根据顶点坐标可得到函数的最小值为-3;根据当x<0时,抛物线都在x轴上方,可得y>0;由图示知:0<x<2,y随x的增大而减小;【题目详解】解:①由函数图象开口向上可知,,故此选项正确;②由函数的图像与轴的交点在可知,,故此选项正确;③由函数的图像的顶点在可知,函数的最小值为,故此选项正确;④因为函数的对称轴为,与轴的一个交点为,则与轴的另一个交点为,所以当时,,故此选项正确;⑤由图像可知,当时,随着的值增大而减小,所以当时,,故此选项错误;其中正确信息的有①②③④.故选:C.【题目点拨】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=,;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.10、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【题目详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【题目点拨】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.二、填空题(每小题3分,共24分)11、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【题目详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【题目点拨】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.12、-1.【分析】首先根据题意,可得:x2+2x=m,2x+3=n,m+n=y;然后根据y=﹣1,可得:x2+2x+2x+3=﹣1,据此求出x的值是多少,进而求出n的值是多少即可.【题目详解】根据题意,可得:x2+2x=m,2x+3=n,m+n=y,∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案为:﹣1.【题目点拨】此题考查一元二次方程的解法,根据方程的特点选择适合的解法是解题的关键.13、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【题目详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【题目点拨】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.14、π【分析】如图,设图中③的面积为S1.构建方程组即可解决问题.【题目详解】解:如图,设图中③的面积为S1.由题意:,可得S1﹣S2=π,故答案为π.【题目点拨】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.15、-22【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算.【题目详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以=1-2+3-4+…+43-44=-22【题目点拨】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.16、k≤5且k≠1.【解题分析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.17、【分析】将m代入方程,再适当变形可得的值.【题目详解】解:将m代入方程得,即,所以.故答案为:2020.【题目点拨】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.18、3.5;【分析】(1)利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解.【题目详解】(1)△ABC的面积=3×3−×2×3−×1×3−×1×2,=9−3−1.5-1=3.5;(2)由勾股定理得,AC=,所以,点A所经过的路径长为故答案为:3.5;.【题目点拨】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键.三、解答题(共66分)19、(1)无论取任何实数,方程总有实数根;证明见解析;(2).【分析】(1)由题意分当时以及当时,利用根的判别式进行分析即可;(2)根据题意令,代入抛物线解析式,并利用二次函数图像性质确定实数的取值范围.【题目详解】解:(1)①当时,方程为时,,所以方程有实数根;②当时,所以方程有实数根综上所述,无论取任何实数,方程总有实数根.(2)令,则,解方程,∵二次函数图象与轴两个交点的横坐标均为整数,且为正整数∴∴该抛物线解析式∴对称轴∵,是抛物钱上的两点,且∴【题目点拨】本题考查二次函数图像的综合问题,熟练掌握二次函数图像的相关性质是解题关键.20、(1)证明见解析;(2)猜想=或(理由见解析【解题分析】试题分析:(1)由已知条件易证∠BAE=∠CAD,∠AEB=∠ADC,从而可得△AEB∽△ADC,由此可得,这样就可得到BE·AD=DC·AE;(2)由(1)中所得△AEB∽△ADC可得=,结合∠DAE=∠BAC可得△BAC∽△EAD,从而可得:=或().试题解析:①∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠DAC=∠BAE,∵∠AEB=∠ADB+∠DAE,∠ADC=∠ADB+∠BDC,又∵∠DAE=∠BDC,∴∠AEB=∠ADC,∴△BEA∽△CDA,∴=,即BE·AD=CD·AE;②猜想=或(),由△BEA∽△CDA可知,=,即=,又∵∠DAE=∠BAC,∴△BAC∽△EAD,∴=或().21、(1);(2).【解题分析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和为奇数的结果数,然后根据概率公式求解.【题目详解】(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为1,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率==.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)证明见解析;(2).【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【题目详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积23、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出点A、B的坐标,令x=0,求出y即可求出点C的坐标,再根据对称轴公式即可求出抛物线的对称轴;(1)先将二次函数的一般式化成顶点式,即可求出点D的坐标,利用待定系数法求出直线AC的解析式,从而求出点F的坐标,根据“铅垂高,水平宽”求面积即可;(3)根据等腰三角形的底分类讨论,①过点O作OM⊥AC交DE于点P,交AC于点M,根据等腰三角形的性质和垂直平分线的性质即可得出此时AC为等腰三角形ACP的底边,且△OEP为等腰直角三角形,从而求出点P坐标;②过点C作CP⊥DE于点P,求出PD,可得此时△PCD是以CD为底边的等腰直角三角形,从而求出点P坐标;③作AD的垂直平分线交DE于点P,根据垂直平分线的性质可得PD=PA,设PD=x,根据勾股定理列出方程即可求出x,从而求出点P的坐标.【题目详解】(1)对于抛物线y=﹣x1+1x+6令y=0,得到﹣x1+1x+6=0,解得x=﹣1或6,∴B(﹣1,0),A(6,0),令x=0,得到y=6,∴C(0,6),∴抛物线的对称轴x=﹣=1,A(6,0).(1)∵y=﹣x1+1x+6=,∴抛物线的顶点坐标D(1,8),设直线AC的解析式为y=kx+b,将A(6,0)和C(0,6)代入解析式,得解得:,∴直线AC的解析式为y=﹣x+6,将x=1代入y=﹣x+6中,解得y=4∴F(1,4),∴DF=4,∴==11;(3)①如图1,过点O作OM⊥AC交DE于点P,交AC于点M,∵A(6,0),C(0,6),∴OA=OC=6,∴CM=AM,∠MOA=∠COA=45°∴CP=AP,△OEP为等腰直角三角形,∴此时AC为等腰三角形ACP的底边,OE=PE=1.∴P(1,1),②如图1,过点C作CP⊥DE于点P,∵OC=6,DE=8,∴PD=DE﹣PE=1,∴PD=PC,此时△PCD是以CD为底边的等腰直角三角形,∴P(1,6),③如图3,作AD的垂直平分线交DE于点P,则PD=PA,设PD=x,则PE=8﹣x,在Rt△PAE中,PE1+AE1=PA1,∴(8﹣x)1+41=x1,解得x=5,∴PE=8﹣5=3,∴P(1,3),综上所述:点P的坐标为(1,1)或(1,6)或(1,3).【题目点拨】此题考查的是二次函数与图形的综合大题,掌握将二次函数的一般式化为顶点式、二次函数图象与坐标轴的交点坐标的求法、利用“铅垂高,水平宽”求三角形的面积和分类讨论的数学思想是解决此题的关键.24、(1)分别为120元、200元(2)有三种购买方案,见解析【解题分析】(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得,解得.∴一套课桌凳和一套办公桌椅的价格分别为120元、200元.(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意有1600≤80000-120×20m-200×m≤24000,解得,.∵m为整数,∴m=22、23、24,有三种购买方案:

方案一

方案二

方案三

课桌凳(套)

440

460

480

办公桌椅(套)

22

23

24

(1)根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可.(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出不等式组求出即可.25、(1),m的值为-2;(2)P点坐标为.【分析】(1)由已知条件求出点A,及m的值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论