浙江省台州黄岩区六校联考2024届九年级数学第一学期期末复习检测模拟试题含解析_第1页
浙江省台州黄岩区六校联考2024届九年级数学第一学期期末复习检测模拟试题含解析_第2页
浙江省台州黄岩区六校联考2024届九年级数学第一学期期末复习检测模拟试题含解析_第3页
浙江省台州黄岩区六校联考2024届九年级数学第一学期期末复习检测模拟试题含解析_第4页
浙江省台州黄岩区六校联考2024届九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省台州黄岩区六校联考2024届九年级数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.方程的根是()A. B. C. D.2.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b23.用配方法解方程x2-4x+3=0时,原方程应变形为()A.(x+1)2=1 B.(x-1)2=1 C.(x+2)2=1 D.(x-2)2=14.在同一时刻,身高1.6m的小强在阳光下的影长为0.8m,一棵大树的影长为4.8m,则树的高度为()A.4.8m B.6.4m C.9.6m D.10m5.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣26.如图,点在以为直径的内,且,以点为圆心,长为半径作弧,得到扇形,且,.若在这个圆面上随意抛飞镖,则飞镖落在扇形内的概率是()A. B. C. D.7.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个 B.1个 C.2个 D.1个或2个8.下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=09.三角形的内心是()A.三条中线的交点 B.三条高的交点C.三边的垂直平分线的交点 D.三条角平分线的交点10.下列根式是最简二次根式的是A. B. C. D.二、填空题(每小题3分,共24分)11.当_____时,在实数范围内有意义.12.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.13.圆锥的母线长为,底面半径为,那么它的侧面展开图的圆心角是______度.14.若,则=____.15.方程的根是________.16.计算sin60°cos60°的值为_____.17.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则四边形ODEF的面积为_____.18.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).三、解答题(共66分)19.(10分)在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△AMC的面积;(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.20.(6分)如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.21.(6分)如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.22.(8分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?23.(8分)如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.24.(8分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围25.(10分)在面积都相等的一组三角形中,当其中一个三角形的一边长为1时,这条边上的高为1.(1)①求关于的函数解析式;②当时,求的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?26.(10分)解方程:(1)解方程:;(2).

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据因式分解法,可得答案.【题目详解】解:解得:,,故选:.【题目点拨】本题考查了解一元二次方程,因式分解是解题关键.注意此题中方程两边不能同时除以,因为可能为1.2、B【解题分析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式3、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【题目详解】移项,得

x2-4x=-3,配方,得

x2-2x+4=-3+4,即(x-2)2=1

,故选:D.【题目点拨】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.4、C【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】设树高为x米,所以x=4.8×2=9.6.这棵树的高度为9.6米故选C.【题目点拨】考查相似三角形的应用,掌握同一时刻物高和影长成正比是解题的关键.5、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【题目详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.6、C【分析】如图,连接AO,∠BAC=120,根据等腰三角形的性质得到AO⊥BC,∠BAO=60,解直角三角形得到AB=,由扇形的面积公式得到扇形ABC的面积=,根据概率公式即可得到结论.【题目详解】如图,连接AO,∠BAC=120,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60,∵BC=2,∴BO=1,∴AB=BO÷cos30°=,∴扇形ABC的面积=,∵⊙O的面积=,∴飞镖落在扇形ABC内的概率是=,故选:C.【题目点拨】本题考查了几何概率,扇形的面积的计算,等腰三角形的性质,解直角三角形的运用,正确的识别图形是解题的关键.7、D【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【题目详解】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选D.【题目点拨】本题考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.8、C【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【题目详解】A.△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B.△=32﹣4×3<0,方程没有实数解,所以B选项错误;C.方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D.方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.9、D【分析】根据三角形的内心的定义解答即可.【题目详解】解:因为三角形的内心为三个内角平分线的交点,故选:D.【题目点拨】此题主要考查了三角形内切圆与内心,解题的关键是要熟记内心的定义和性质.10、D【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】解:A.,不符合题意;B.,不符合题意;C.,不符合题意;D.是最简二次根式,符合题意;故选D.【题目点拨】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、x≥1且x≠1【分析】二次根式及分式有意义的条件:被开方数为非负数,分母不为1,据此解答即可.【题目详解】∵有意义,∴x≥1且﹣1≠1,∴x≥1且x≠1时,在实数范围内有意义,故答案为:x≥1且x≠1【题目点拨】本题考查二次根式和分式有意义的条件,要使二次根式有意义,被开方数为非负数;要使分式有意义分母不为1.12、1.【解题分析】试题分析:根据题目中的条件易证△ABP∽△CDP,由相似三角形对应边的比相等可得,即,解得CD=1m.考点:相似三角形的应用.13、1【分析】易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【题目详解】∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,,解得n=1.故答案为1.【题目点拨】此题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.14、【解题分析】根据比例的性质进行求解即可.【题目详解】∵,∴设a=3k,b=5k,∴=,故答案为:.【题目点拨】本题考查了比例的性质,熟练掌握是解题的关键.15、x1=0,x1=1【分析】先移项,再用因式分解法求解即可.【题目详解】解:∵,∴,∴x(x-1)=0,x1=0,x1=1.故答案为:x1=0,x1=1.【题目点拨】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.16、【分析】直接利用特殊角的三角函数值代入求出答案.【题目详解】原式=×.故答案为:.【题目点拨】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17、1【分析】利用位似图形的性质得出D点坐标,进而求出正方形的面积.【题目详解】∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),∴OA:OD=1:,∵OA=1,∴OD=,∴正方形ODEF的面积为:OD1=×=1.故答案为:1.【题目点拨】此题主要考查了位似变换以及坐标与图形的性质,得出OD的长是解题关键.18、55【分析】连接OA,OB,根据圆周角定理可得解.【题目详解】连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所对的圆周角和圆心角,∴∠C=∠AOB=55°.三、解答题(共66分)19、(1)y=-14x2+12x+2;(1)32【解题分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(1)利用配方法可求出点M的坐标,利用二次函数图象上点的坐标特征可求出点C的坐标,过点M作MH⊥y轴,垂足为点H,利用分割图形求面积法可得出△AMC的面积;(3)连接OB,过点B作BG⊥x轴,垂足为点G,则△BGA,△OCB是等腰直角三角形,进而可得出∠BAO=∠DBO,由∠DOB+∠BOE=45°,∠BOE+∠EOA=45°可得出∠EOA=∠DOB,进而可证出△AOE∽△BOD,利用相似三角形的性质结合抛物线的对称轴为直线x=1可求出AE的长,过点E作EF⊥x轴,垂足为点F,则△AEF为等腰直角三角形,根据等腰直角三角形的性质可得出AF、EF的长,进而可得出点E的坐标.【题目详解】解:(1)将A(4,0),B(1,1)代入y=ax1+bx+1,得:16a+解得:a=∴抛物线的表达式为y=﹣14x1+12(1)∵y=﹣14x1+12x+1=﹣14(x﹣1)1∴顶点M的坐标为(1,94当x=0时,y=﹣14x1+12∴点C的坐标为(0,1).过点M作MH⊥y轴,垂足为点H,如图1所示.∴S△AMC=S梯形AOHM﹣S△AOC﹣S△CHM,=12(HM+AO)•OH﹣12AO•OC﹣12CH=12×(1+4)×94﹣12×4×1﹣12×(=32(3)连接OB,过点B作BG⊥x轴,垂足为点G,如图1所示.∵点B的坐标为(1,1),点A的坐标为(4,0),∴BG=1,GA=1,∴△BGA是等腰直角三角形,∴∠BAO=45°.同理,可得:∠BOA=45°.∵点C的坐标为(1,0),∴BC=1,OC=1,∴△OCB是等腰直角三角形,∴∠DBO=45°,BO=12,∴∠BAO=∠DBO.∵∠DOE=45°,∴∠DOB+∠BOE=45°.∵∠BOE+∠EOA=45°,∴∠EOA=∠DOB,∴△AOE∽△BOD,∴AEBD∵抛物线y=﹣14x1+12x+1的对称轴是直线∴点D的坐标为(1,1),∴BD=1,∴AE1∴AE=2,过点E作EF⊥x轴,垂足为点F,则△AEF为等腰直角三角形,∴EF=AF=1,∴点E的坐标为(3,1).【题目点拨】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、三角形(梯形)的面积、相似三角形的判定与性质以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(1)利用分割图形求面积法结合三角形、梯形的面积公式,求出△AMC的面积;(3)通过构造相似三角形,利用相似三角形的性质求出AE的长度.20、(1)详见解析;(2)图详见解析,12;(3).【分析】(1)如图1,延长EG交DC的延长线于点H,由“AAS”可证△CGH≌△BGE,可得GE=GH,由直角三角形的性质可得DG=EG=GH;

(2)通过证明△DEO∽△DBO,可得,可求DE=,由平行线分线段成比例可求EG=,GO=EG-EO=,由勾股定理可求BG=CG=,可得DE=AD,即点A与点E重合,可画出图形,由面积公式可求解;

(3)如图3,过点O作OF⊥BC,由旋转的性质和等腰三角形的性质可得GF=G'F,由平行线分线段成比例可求GF的长,由勾股定理可求解.【题目详解】证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,又∵BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS),∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴,∴DE×DE=4×(2+4)=24,∴DE=∴EO=,∵AB∥CD,∴,∴HO=2EO=,∴EH=,且EG=GH,∴EG=,GO=EG﹣EO=,∴GB=,∴BC==AD,∴AD=DE,∴点E与点A重合,如图2:∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××BD×AO=6×2=12;(3)如图3,过点O作OF⊥BC,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'=.【题目点拨】本题是四边形综合题,考查了平行四边形的性质,矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,添加恰当辅助线是本题的关键.21、菱形的高是9.6cm,面积是96cm1.【解题分析】根据菱形的对角线互相垂直平分,利用勾股定理求出AC与BD的长,再由菱形面积公式求出所求即可.【题目详解】解:∵BD:AC=3:4,∴设BD=3x,AC=4x,∴BO=,AO=1x,又∵AB1=BO1+AO1,∴AB=x,∵菱形的周长是40cm,∴AB=40÷4=10cm,即x=10,∴x=4,∴BD=11cm,AC=16cm,∴S▱ABCD=BD•AC=×11×16=96(cm1),又∵S▱ABCD=AB•h,∴h==9.6(cm),答:菱形的高是9.6cm,面积是96cm1.【题目点拨】此题考查了菱形的性质,勾股定理,熟练掌握菱形的性质是解本题的关键.22、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解题分析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w(元)与销售价x之间的函数关系,再依据函数的增减性求得最大利润.【题目详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克,设:y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y与x的函数关系式为:y=﹣50x+800(x>0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x﹣8)=600解得:x1=10,x2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【题目点拨】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.23、(1),点;(2)点;(3)或【解题分析】(1)设抛物线的表达式为,将A、B、C三点坐标代入表达式,解出a、b、c的值即可得到抛物线表达式,同理采用待定系数法求出直线BC解析式,即可求出与对称轴的交点坐标;(2)过点E作EH⊥AB,垂足为H.先证∠EAH=∠ACO,则tan∠EAH=tan∠ACO=,设EH=t,则AH=2t,从而可得到E(-2+2t,t),最后,将点E的坐标代入抛物线的解析式求解即可;(3)先证明,再根据与相似分两种情况讨论,建立方程求出AF,利用三角函数即可求出F点的坐标.【题目详解】(1)设抛物线的表达式为.把,和代入得,解得,抛物线的表达式,∴抛物线对称轴为设直线BC解析式为,把和代入得,解得∴直线BC解析式为当时,点.(2)如图,过点E作EH⊥AB,垂足为H.∵∠EAB+∠BAC=90°,∠BAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论