小学六年级数学《圆柱的表面积》课件(5篇)_第1页
小学六年级数学《圆柱的表面积》课件(5篇)_第2页
小学六年级数学《圆柱的表面积》课件(5篇)_第3页
小学六年级数学《圆柱的表面积》课件(5篇)_第4页
小学六年级数学《圆柱的表面积》课件(5篇)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第小学六年级数学《圆柱的表面积》课件(5篇)六年级数学下册《圆柱的表面积》教案篇1

知识与技能目标:

1.通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。

2.会正确计算圆柱的侧面积和表面积。

教学重点:动手操作展开圆柱的侧面积

教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教具准备:圆柱表面展开图

学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

教学过程:

一、创设情境,引起兴趣。

拿出圆柱体茶叶罐,(茶叶罐的表面贴上彩色纸)谁能说说圆柱有几个面?(学生答:三个面)它的上面是什么图形?(学生答:圆形)下面是什么图形?(学生答:圆形)它们相等吗?(摘下上下两个底面进行比较)。

二、自主探究,发现问题

1、探究圆柱侧面的计算方法

教师提问:圆柱的侧面展开是一个什么图形?(学生答:长方形)(教师把侧面的纸展开)长方形和圆柱有什么关系?(教师演示:用圆柱的底面在长方形的长上滚动)同学们你们发现了什么?(学生答:长方形的长等于底面的周长)(教师演示:用圆柱的高和长方形比较)同学们你们又发现了什么?(长方形的宽等于圆柱的高)。

小结:这个长方形与圆柱体有什么关系?

长方形的长=圆柱体底面周长

长方形的宽=圆柱体的高

长方形的面积=圆柱的侧面积

即:长宽=底面周长高

所以,:圆柱的侧面积=底面周长高

s侧=ch

如果已知底面半径为r,圆柱的侧面积公式也可以写成:

s侧=2∏rh

2、研究圆柱表面积

(1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。

学生测量,计算表面积。

底面周长是厘米,高是10厘米。

(2)、圆柱体的表面积怎样求呢?

底面半径:÷2÷=5(厘米)

底面积:55=(平方厘米)

侧面积:10=314(平方厘米)

圆柱的表面积:2+314=471(平方厘米)

得出结论:圆柱的表面积=圆柱的侧面积+底面积2

s=2πr²+2πrh=2πr(r+h)

三、实际应用

(教师把纸发给同学)现在请一组的同学们帮我制做一个圆柱形烟囱,二组的同学帮我制做一个圆柱水桶,三组的同学帮我制做一个圆柱形的油桶。(教师检查验收)一组的同学你们做的烟囱为什么只有侧面?(学生答:因为烟囱只有侧面,没有底面,有底面就不通气)。二组做的圆柱形水桶为什么没有盖?(学生答:圆柱形水桶有盖装不进水)。三组的同学做的圆柱形的油桶为什么有盖?(学生答:因为圆柱形的油桶没有盖油会跑掉)。

四、回顾全课

本节课你收获了什么,有什么遗憾。

五、板书

圆柱的表面积圆柱的表面积

长方形的长是圆柱体底面周长

长方形的宽是圆柱体的高

长方形的面积=圆柱的侧面积

即:长宽=底面周长高

所以,:圆柱的侧面积=底面周长高

s侧=ch

s侧=2∏rh

圆柱的表面积=圆柱的侧面积+底面积2

s=2πr²+2πrh=2πr(r+h)

数学思考:

运用知识的迁移,用化曲面为平面的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

问题解决:

使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。

情感态度:

让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。

六、课后反思:

1、圆柱的表面积关键是要让学生理解表面积的公式,理解圆柱的侧面展开是一个正方形,正方形的长等于圆柱的底面周长,宽等于圆柱的高,比较正方形的长和圆柱的底面周长可以用圆柱的底面在长方形的长上滚动,这样学生既易理解,又直观形象。

2、实际应用中学生制作了圆柱形烟囱,圆柱形水桶,圆柱形的油桶既巩固了圆柱的表面积公式,又培养了学生的求异思维,鼓励了学生合作学习。

3、这适合于缺少电脑,实物投影仪的农村学校。

小学六年级上册数学《圆的面积》教案篇2

揭示课题师:前面我们认识了圆,学习了圆的周长,今天学习“圆的面积”。(教师板书,学生齐读)师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?生:这堂课我们要学习圆的面积是怎样求出来的。生:学生圆的面积公式。师:你们知道圆的面积公式后,你们还想到什么问题?生:圆的面积公式根据什么推导出来的。师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。(出示小黑板上的板书,学生齐读。)1.计算圆的面积公式是什么?2.这个公式是怎能样推导出来的?[评:这种揭示课题,设计新颖,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。]导入新课师:现在请大家回忆一下,我们以前学过哪些基本图形的面积计算。生:我们已经学过长方形、正方形、平行四边形、三角形、梯形的面积计算。(教师随着学生的回答,逐一用投影机放出上述图形)。师:上面这五种图形和今天学习的圆形有什么显著的区别?生:上面五个图形是由线段围成的,下面的圆形是由曲线围成的。师:因为圆是由曲线围成的,计算圆的面积就比较困难了。能不能直接用面积单位去量呢?生;它是圆的,用面积单位直接量是有困难的。师:究竟用什么方法,请大家阅读课本,在课本中寻找答案。(学生阅读课本后,纷纷举手要求回答)生:我们可以用图形转化的方法,求圆的面积。师:这个办法很好。那么把圆形转化成什么图形呢?生:长方形。师:以前我们学习的哪些图形也是转化成长方形,来推导出面积计算公式。(用投影机放出几种图形的转化图解,边出示,边讨论)[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]进行新课师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4r2表示,你们观察一下这个圆的面积等不等于4r2?生:不等。师:为什么?生:因为,这个圆面积还要加上外面的4小块,才是4r2。师:这个圆的面积比4r2小,等不等于3r2呢?生:看上去比3r2又要大一些。师:现在我们可以大致估计一下,这个圆面积要比3r2多一点,也就是r2的3倍多一点。至于多多少,现在就来推导圆面积的计算公式。(教师要求学生把预先准备好的一个圆分成16个相等的扇形,拼成一近似的长方形,学生可以一边看书,一边操作)师:同学们观察一下,拼成的是什么图形?生:近似于长方形。师:说得很好,为什么说近似长方形,哪里不太像?生:长边都是许多弧形组成,不是直线。师:这里我们把圆分成16等分,还能分吗?生:可以分成32等分、64等分、128等分……师:究竟能分多少份呢?生:无数份,可以永远分下去。师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。师:把圆转化成长方形后,这个长方形的面积怎样计算?(教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)长方形面积=长_宽↓↓圆的面积=圆周长的一半_半径↓=πr_r=πr2师:现在可以回答前面提出的问题,圆面积是以半径为边长的正方形面积多少倍呢?生:π倍。生:约等于倍。师:刚才我们的猜想是正确的,圆面积的3r2多一点,现在推导出来的圆面积公式是πr2,也就是约等于r2。师:现在请同学们把圆面积公式的推导过程再完整地说一遍。(学生回答略)[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]巩固新课采用抢答比赛的形式巩固新课。把学生分成4组,每组的底分为100分,答对1题加10分,答错1题扣10分。抢答题用投影片逐题出现:(1)计算圆的面积必需要具备哪些条件?(2)一个圆的直径与正方形边长相等,圆和正方形哪个面积大?(3)半径是1米的圆,面积是平方米,半径是2米的圆面积是多少平方米?(4)圆能不能转化成三角形,来推导出求圆面积的公式?(出示第4题前,教师宣布:第4题比较难,要先用学具摆,用相等的16个扇形先摆成三角形,然后观察,再写出推导过程。谁回答正确得30分。学生情绪高涨,都积极思考,抢着摆学具,抢着到黑板上写出推导的算式。)三角开面积=底_高÷2=_4r÷2=_4r÷2=2πr_r÷2=πr2[评:用抢答形式巩固新课,设计新颖,激发学生兴趣,调动积极性,把课堂教学推向了高潮。特别第4题作为思考题,有助于发展学生的创造性思维。]课堂小结师:这堂课大家学到了什么?有什么收获?学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。叮铃铃,下课钤响了,这堂课在轻松愉快的气氛中结束。[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

小学数学《圆柱的表面积》优秀教学设计篇3

本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到化。

1、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

如揭示圆的面积定义。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的_,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

2、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。

六年级数学《圆柱的表面积》教学设计篇4

一、学习目标:

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

二、学习重点:

掌握圆柱侧面积和表面积的计算方法。

三、学习难点:

运用所学的知识解决简单的实际问题。

四、学习过程:

(一)、旧知复习

1、圆柱有几个面?分别是___、___和___。

2、底面是____形,它的面积=___。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个___形。它的长等于圆柱的___,宽等于圆柱的___。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

(二)列式为

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=___,所以圆柱的侧面积=____。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是,高。②底面半径是,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的___和___这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由___和___组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=___

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的___。需要注意的是厨师帽没有下底面,说明它只有__个底面。

列式计算:

①帽子的侧面积=___

②帽顶的面积=___

③这顶帽子需要用面料=___

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

五、教学结束:

小学数学《圆柱的表面积》教学设计篇5

一、教案背景

“圆柱的表面积”是北师大版小学数学教材第十二册的内容,是在学生已有初步的几何概念,空间想象力的基础上进行教学的。教学目的在于通过教学活动,培养学生观察能力,勤于动脑,善于思考,培养以创新的思维解决开放性的问题,及合作学习的能力和对数学的学习兴趣。

学生课前准备:

(1)准备矿泉水瓶等一些圆柱形物品。

(2)自带小剪刀和图画纸。

二、教学课题

圆柱体表面积的教学是本单元的第二个主题活动,其前知识基础应该是圆柱体的认识和长方体、正方体表面积的认识和计算。

1、使学生理解圆柱体侧面积和表面积的含义。

2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

3、体验成功与失败的收获,体会合作的愉悦。

三、教材分析

《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的特点以后进行的内容。

四、教学重点

通过学生操作演示,推导出圆柱侧面积、表面积的计算公式

五、教学难点

使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系。教学之前用百度在网上搜索《圆柱的表面积》的相关教学材料,找了很多教案和材料作参考,了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用百度搜索关于圆柱的视频,课堂放给学生观看,加深印象。用百度图片网上搜索下载一些圆柱的图片,培养学生读图识别能力。通过百度在网上搜索一些关于圆柱的文字资料和图片资料,做成PPT课堂给同学们演示,生动直观、活泼有趣地学习本课。

六、教学方法

情境教学法、实践操作法、迁移类推法

1、生用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?

2、能用已有的知识计算它的面积吗?

七、教学过程

(一)创设情境,激趣导入

【设计意图:本环节通过出示生活中一些圆柱体图片,创设情境,并通过师生对话交流,

激起学生求知欲,让学生饶有兴趣的步入本节课的殿堂。】

教师提问:认识这些物体吗?

学生回答:圆柱体

教师谈话:那我们本节课就再次走入圆柱的世界,去探索它的表面积。(板书课题)

(二)自主探索,发现问题

【设计意图:本环节将数学与实际生活密切联系在一起,利用百度视频—圆瓶贴标机,让学生感受到圆柱的侧面是哪一部分,并通过学生动手操作,从而让学生清楚的知道了圆柱侧面展开得到的图形,从而顺利的解决了重难点】

圆柱的侧面积

学生回答:(给圆柱形瓶子贴标签)

教师提问:标签的面积应该是圆柱的什么面积呢?

学生回答:侧面积

教师谈话:那我们就一起用手中的实物瓶子来一起操作吧。

1、用喜欢的方式,将个人的瓶子的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的`方法不同能得到什么不同的图形)

(展开的形状可能是长方形、平行四边形、正方形等)

独立操作后,与小组里的同学交流。

2、能用已有的知识计算它的面积吗?

先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。

3、小组汇报。

重点感受:圆柱体侧面如果沿着高展开是一个长方形。

教师提问:这个长方形与圆柱体有什么关系?学生回答:长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。

(课件展示)

长方形的面积=圆柱的侧面积

即长_宽=底面周长_高

所以,圆柱的侧面积=底面周长_高

S侧=C_h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r_h

教师提问:如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

4、解决问题:

瓶矿泉水,需要用多少平方米的包装纸呢?

小组交流:只解决1个瓶子的包装纸的面积即可

圆柱表面积

1、教师提问:出示主题图:做一个圆柱形纸盒,需要多大面积的纸板?

这一事件从数学角度看,是个怎样数学问题?

学生回答:求圆柱表面积

教师引导学生说一说圆柱体表面展开图是什么样的,教师再出示圆柱体展开图

2、教师提问:圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论