




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(Non-euilibriumThermodZHAOSHIXITel:E-mail:GraduateSchoolatShenzhen,TsinghuaEmotion些细部重新装到一起。‐‐‐‐‐‐‐‐‐‐‐‐‐‐阿尔文托夫勒以Progogine以Progogine为首的布鲁塞尔学派又经过多年的努力,在对理论——耗散结构理论。这一理论于1969年由Progogine在一他因此获得Nobel化学奖。《从混沌到有序》伊.普里戈金,伊.Thischapterwilldescribethreefurthercrystalpropertiesrepresentedbytensors,namely,thermalandelectricconductivity,andthermoelectricity.Sincetheyareconcernedwithtransportprocessesandthermodynamicallyirreversiblephenomena,thesepropertiesdonotfitintotheschemeofreversibleeffectssetupinabovechapter.Itisthereforemoreconvenientandlogicaltotreatthemseparatelyhere.1.Thermal1.Thermal1.1thethermalconductivityandresistivityhhkiihk ijxThethermalconductivitykijisasecond-ranktensor,and[kij]isasymmetricaltensor.kijk k31Referredtoitsprincipalkkk3323T 0h1k1x,k0T10k33h2k hkT,2333(2)(2)hk ijxTWheretherijarefunctionsofthekij,therijrelatetwovectorsandhenceformasecond-ranktensor,thethermalresistivitytensor.Theresistivityisthereciprocaloftheconductivity.rk Buttherelationbetweentheindividualcomponentsof[kij]and[rij]isnot,ingeneral,oneofsimplereciprocity.Thus,forr k12andr12refertoquitedifferentk12givestheresultofmeasuringthex1componentoftheheatflowinanexperimentinwhichthetemperaturegradientisalongx2;thush 122r12,ontheotherhand,referstoanexperimentinwhichthex1componentoftemperaturegradientismeasuredwhilethetotalflowofheatisalongx2;Tr121Sincekijkji,itiseasilyprovedfromtherrk WhenWhenthesymmetricaltensor[rij]isreferredtoitsprincipalaxes,whosedirectionsarethesameasthoseoftheconductivitytensor,wehaveTrh,Trh,Tr123 r11k1,r21k2,r31Theresistivityellipsoid,whoseequationreferredtotheprincipalaxesrxrxrx2 1 2 3Thushassemi-axesofthelengthsinverselyproportionaltothoseoftheconductivityellipsoid.2.ElectricalTheformalanalysisoftheconductionofelectricityinanisotropiccrystalsissimilartothatoftheconductionofheat.ThefundamentalequationisthegeneralizedformofOhm’sLaw:Wherejiisthecurrentdensity,σijistheelectricalconductivitytensor,ФispotentialandEkistheelectricfieldEiik ρikistheelectricalresistivitytensor.Theresistivitymatrixisthereciprocaloftheconductivitymatrix.。。TherateofJouleheatingTherateofJouleheatingoftheconductorisexpressedbythescalarproductofthecurrentdensityandthefield.Inacrystal,therefore,theheatproducedinunittimeandunitvolumeisWherejisthemagnitudeofthecurrentdensityandρistheresistivityinthedirectionofthecurrent.jE jj3.Theconductionofheatandtheconductionofelectricityincrystalsweretreatedinlasttwopartsastwoseparateprocesses.Thiswaspossiblebecausewewereconcernedwithsituationswhereonlyoneoftheprocessesoccurredatatime.However,whenbothprocessesoccurredtogethertheyinterferedwithoneanother,theresultsofthisinterferencebeingobservedasthephenomenaofthermoelectricity.Inthepresentsectionweformulatethebasicequationswhichgovernthermoelectricityincrystalsandweshowhowtheequationsleadtothevariousobservedeffects.Itisfirstnecessarytodiscussthermoelectricityinisotropicconductors.3.13.1ThermoelectriceffectsinisotropicTherearethreethermoelectriceffectsinisotropicThethermoelectrice.m.f.(Seebeckeffect塞贝克效应).Ifacircuitismadeoftwodifferentmetalsaandb,thejunctionsaremaintainedatdifferenttemperatures,ane.m.f.issetupinthecircuit.Ifacondenser(电容器)isinsertedintheconductora,forinstance(Fig.14.1)itbecomes托马斯约翰塞贝克[1](也有译做“西伯克”)1770年生于说,科学家们的眼睛让奥斯特(电磁学的先驱)ThePeltierheat.Whencurrentisallowedtoflowacrossajunctionbetweentwodifferentmetalsitisfoundthatheatmustbecontinuouslyaddedorsubtractedatthejunctioninordertomaintainitstemperatureconstant,theheatisproportionaltothecurrentflowingandchangessignwhenthecurrentisreversed.WewriteQabab WhereQabistherateatwhichheatisabsorbedatthejunctionwhenacurrentJpassesfrommetalatometalb.andПabisthePeltiercoefficient,whichdependsonthenatureoftheconductorsandthetemperature.TheThomsonheat.whenacurrentTheThomsonheat.whenacurrentflowsinawire,ofhomogeneousmaterialandofconstantcross-sectionbutwithanon-uniformtemperature,heatmustbesuppliedtokeepthetemperaturedistributionsteady.Theheatthatmustbesuppliedinunittimetoanelementofthewireinwhichthetemperaturerise,inthedirectionofthecurrent,isdTisdQ WhereτistheThomson三个热电效应(thermoelectriceffect)Therearetworelationsbetweenthemagnitudesofthethermoelectriceffects(i),(ii),(iii)aboveknownastheThomsonrelations.Wenowderivethem,usingthemethodsofirreversiblethermodynamicsoutlinedinthelastsection.SupposethejunctionsareattemperaturesTandT+ΔTintwolargeheatreservoirsAandB,andthatapotentialdifferenceΔφisestablishedacrossthecondenserC,thesidenearertoBbeingatthehigherpotential.Thecondenserissupposedtohavenoheatcapacityandthewiresaandbaresupposedtobethermally(andelectrically)insulated.DerivationoftheThomsonTheequationsTheequationsconnectingtheflowofelectricityj1,andofheatj2,with“force’X1=-gradφ,andX2=-1/TgradT,jLXLXj1L11X1L12X2 21 222WiththeOnsagerForthecircuitheretheequationstaketheJLLT 12THLT 22Tje1Th ikkikTxkiki ikTxkT4.The4.TheOnsager’sreciprocalTheheatconductivitykijinanisotropiccrystalsisasymmetricalsecond-rankkijkThisassumptionisjustifiablebynomeansobvious.Itasserts,forexample,that,ifatemperaturegradientinthex1directionproducesacertainheatflowinthex2direction(givenbyk21),thesametemperaturegradientappliedinthex2directionwouldgivenaheatflowofpreciselythesamemagnitudeinthex1direction(givenbyk12).Toseewhatisinvolvedintheassumptionitishelpfulfirsttodiscoverwhattheconsequenceswouldbeif(4)didnothold.ΔT—x1directionh—x2ΔT—x2directionh—x1Firstsplit[kij]intoasymmetricalandananti-symmetrical k31 k31 000k330k23kk0 k3323Thepresenceofsymmetryinthecrystalwilltendtoimposerestrictionsonthisschemeofcoefficients.Bywayofillustrationwetakethecaseofacrystalhavinga2-,3-,4-,or6-foldaxis(eitherrotationorinverse)paralleltox3.ifatemperaturegradientsisestablishedparalleltox3,theheatflowmustalsobeparalleltox3,bysymmetry.Hence1→2,2→-1,3k23k31x1 0k00k33K12=-LarsOnsager(November27,1903–October5,1976)wasaNorwegian-bornAmericanphysicalchemistandtheoreticalphysicist,winnerofthe1968NobelPrizeinChemistry.HeheldtheGibbsProfessorshipofTheoreticalChemistryatYale进入挪威诺尔格斯工学院主修化学工程,2年至9年,9年移居美国,年~939年诺贝尔化学奖。昂萨格在1萨格名誉工学博士学位,以弥补当年的失误 Thisisageneralprinciplewhichappliestoalltransportphenomena—underwhichtermmaybeincludedtheconductionofheat,theconductionofelectricity,andthetransportofmatterthattakesplacebydiffusion.Inthermodynamics,theOnsagerreciprocalrelationsexpresstheequalityofcertainratiosbetweenflowsandforcesinthermodynamicsystemsoutofequilibrium,butwhereanotionoflocalequilibriumexists.Theolderthermodynamicshasbeenmoreaccuratelydescribedas“thermostatics”;incontrast,Onsager’stheoryisessentiallythethermodynamicsofirreversibleTheequationgoverningtheflowofanelectriccurrentinanisotropicjMaybejL 1J1representsaflux(ofcharge)andX1representsaInInthesamewaythefluxofheatisproportionaltotheforceontheheataccordingtotheequationjL 2Wherethefluxj2istheheatflow,formerlydesignatedbyh,andtheforceX2=-1/TgradT.thereasonforthefactor1/Twillbereferredtolater(Tistheabsolutetemperature).Equations(23)and(24)wouldbecorrectastheystandifthetwoprocessesoftransportofelectricityandofheattookplaceindependentlyofoneanother.But,ingeneral,thisconditionisnotsatisfied;forwhenthetwoprocessesoccursimultaneouslyinacircuitcomposedoftwodifferentmetalstheyinterfere,asisshownbytheappearanceofthevariousthermoelectriceffects.Ingeneralitisnecessarytousethemorecomprehensiveequations.jLXLXj1L11X1L12X2 21 222Inwhicheachofthefluxesislinearlyrelatedtoboththeforcesinsteadofonlytooneofthem.Onsagerstatesthatinsuchacase,providedthefluxesandforcesarecorrectlychosen.L12=L21Itmaybeverifiedthat,withourchoiceofdefinitionsforthej’sandX’sthedimensionsofL12andL21arethesame.InmoreInmorecomplicatedsituations,wheretheremorethantwofluxesandforces,equations(25)aregeneralizedjL i,j1,2,, ijandOnsager’sPrincipleassertsL Itisimportanttonoticethatthej’sandX’sin(25)and(27)mustbecorrectlychosenbeforeOnsager’sPrinciplecanbeapplied.By“cor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务会计学模拟题
- 自动控制原理考试题
- 设施维护管理制度(9篇)
- 2024-2025学年冀教版八年级下学期英语期末试卷(含答案)
- 幼儿园《疫情防控安全》教案5篇
- 2023年电大开放教育货币银行学网考题库
- 2025年android自学教程!BAT等大厂必问技术面试题BAT大厂面试总结-bat企业安卓课程
- 期末应用题专项训练:分数的加法和减法(含解析)-2024-2025学年数学五年级下册人教版
- 建筑施工特种作业-建筑电工真题库-9
- 日语听力题目大全及答案
- DBJ50-255-2022 建筑节能(绿色建筑)工程施工质量验收标准
- 乒乓球体育课教案
- 幼儿园大班语言课件:《毕业诗》
- 劳动力保证措施以及计划安排
- 2021利达JB-QG-LD988EL JB-QT-LD988EL 火灾报警控制器 消防联动控制器调试手册
- 24春国家开放大学《班级管理》形考任务1-4参考答案
- 2021年中国社会科学院大学统计学原理期末精练试卷
- 手术室坠床跌倒应急预案
- 2024年《军事理论》考试题库附答案(含各题型)
- 《风力发电厂调试规程》
- 广东省中山市2022-2023学年高二下学期期末数学试题(学生版+解析)
评论
0/150
提交评论