第14周transport properties谁来回答这个大问题_第1页
第14周transport properties谁来回答这个大问题_第2页
第14周transport properties谁来回答这个大问题_第3页
第14周transport properties谁来回答这个大问题_第4页
第14周transport properties谁来回答这个大问题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(Non-euilibriumThermodZHAOSHIXITel:E-mail:GraduateSchoolatShenzhen,TsinghuaEmotion些细部重新装到一起。‐‐‐‐‐‐‐‐‐‐‐‐‐‐阿尔文托夫勒以Progogine以Progogine为首的布鲁塞尔学派又经过多年的努力,在对理论——耗散结构理论。这一理论于1969年由Progogine在一他因此获得Nobel化学奖。《从混沌到有序》伊.普里戈金,伊.Thischapterwilldescribethreefurthercrystalpropertiesrepresentedbytensors,namely,thermalandelectricconductivity,andthermoelectricity.Sincetheyareconcernedwithtransportprocessesandthermodynamicallyirreversiblephenomena,thesepropertiesdonotfitintotheschemeofreversibleeffectssetupinabovechapter.Itisthereforemoreconvenientandlogicaltotreatthemseparatelyhere.1.Thermal1.Thermal1.1thethermalconductivityandresistivityhhkiihk ijxThethermalconductivitykijisasecond-ranktensor,and[kij]isasymmetricaltensor.kijk k31Referredtoitsprincipalkkk3323T 0h1k1x,k0T10k33h2k hkT,2333(2)(2)hk ijxTWheretherijarefunctionsofthekij,therijrelatetwovectorsandhenceformasecond-ranktensor,thethermalresistivitytensor.Theresistivityisthereciprocaloftheconductivity.rk Buttherelationbetweentheindividualcomponentsof[kij]and[rij]isnot,ingeneral,oneofsimplereciprocity.Thus,forr k12andr12refertoquitedifferentk12givestheresultofmeasuringthex1componentoftheheatflowinanexperimentinwhichthetemperaturegradientisalongx2;thush 122r12,ontheotherhand,referstoanexperimentinwhichthex1componentoftemperaturegradientismeasuredwhilethetotalflowofheatisalongx2;Tr121Sincekijkji,itiseasilyprovedfromtherrk WhenWhenthesymmetricaltensor[rij]isreferredtoitsprincipalaxes,whosedirectionsarethesameasthoseoftheconductivitytensor,wehaveTrh,Trh,Tr123 r11k1,r21k2,r31Theresistivityellipsoid,whoseequationreferredtotheprincipalaxesrxrxrx2 1 2 3Thushassemi-axesofthelengthsinverselyproportionaltothoseoftheconductivityellipsoid.2.ElectricalTheformalanalysisoftheconductionofelectricityinanisotropiccrystalsissimilartothatoftheconductionofheat.ThefundamentalequationisthegeneralizedformofOhm’sLaw:Wherejiisthecurrentdensity,σijistheelectricalconductivitytensor,ФispotentialandEkistheelectricfieldEiik ρikistheelectricalresistivitytensor.Theresistivitymatrixisthereciprocaloftheconductivitymatrix.。。TherateofJouleheatingTherateofJouleheatingoftheconductorisexpressedbythescalarproductofthecurrentdensityandthefield.Inacrystal,therefore,theheatproducedinunittimeandunitvolumeisWherejisthemagnitudeofthecurrentdensityandρistheresistivityinthedirectionofthecurrent.jE jj3.Theconductionofheatandtheconductionofelectricityincrystalsweretreatedinlasttwopartsastwoseparateprocesses.Thiswaspossiblebecausewewereconcernedwithsituationswhereonlyoneoftheprocessesoccurredatatime.However,whenbothprocessesoccurredtogethertheyinterferedwithoneanother,theresultsofthisinterferencebeingobservedasthephenomenaofthermoelectricity.Inthepresentsectionweformulatethebasicequationswhichgovernthermoelectricityincrystalsandweshowhowtheequationsleadtothevariousobservedeffects.Itisfirstnecessarytodiscussthermoelectricityinisotropicconductors.3.13.1ThermoelectriceffectsinisotropicTherearethreethermoelectriceffectsinisotropicThethermoelectrice.m.f.(Seebeckeffect塞贝克效应).Ifacircuitismadeoftwodifferentmetalsaandb,thejunctionsaremaintainedatdifferenttemperatures,ane.m.f.issetupinthecircuit.Ifacondenser(电容器)isinsertedintheconductora,forinstance(Fig.14.1)itbecomes托马斯约翰塞贝克[1](也有译做“西伯克”)1770年生于说,科学家们的眼睛让奥斯特(电磁学的先驱)ThePeltierheat.Whencurrentisallowedtoflowacrossajunctionbetweentwodifferentmetalsitisfoundthatheatmustbecontinuouslyaddedorsubtractedatthejunctioninordertomaintainitstemperatureconstant,theheatisproportionaltothecurrentflowingandchangessignwhenthecurrentisreversed.WewriteQabab WhereQabistherateatwhichheatisabsorbedatthejunctionwhenacurrentJpassesfrommetalatometalb.andПabisthePeltiercoefficient,whichdependsonthenatureoftheconductorsandthetemperature.TheThomsonheat.whenacurrentTheThomsonheat.whenacurrentflowsinawire,ofhomogeneousmaterialandofconstantcross-sectionbutwithanon-uniformtemperature,heatmustbesuppliedtokeepthetemperaturedistributionsteady.Theheatthatmustbesuppliedinunittimetoanelementofthewireinwhichthetemperaturerise,inthedirectionofthecurrent,isdTisdQ WhereτistheThomson三个热电效应(thermoelectriceffect)Therearetworelationsbetweenthemagnitudesofthethermoelectriceffects(i),(ii),(iii)aboveknownastheThomsonrelations.Wenowderivethem,usingthemethodsofirreversiblethermodynamicsoutlinedinthelastsection.SupposethejunctionsareattemperaturesTandT+ΔTintwolargeheatreservoirsAandB,andthatapotentialdifferenceΔφisestablishedacrossthecondenserC,thesidenearertoBbeingatthehigherpotential.Thecondenserissupposedtohavenoheatcapacityandthewiresaandbaresupposedtobethermally(andelectrically)insulated.DerivationoftheThomsonTheequationsTheequationsconnectingtheflowofelectricityj1,andofheatj2,with“force’X1=-gradφ,andX2=-1/TgradT,jLXLXj1L11X1L12X2 21 222WiththeOnsagerForthecircuitheretheequationstaketheJLLT 12THLT 22Tje1Th ikkikTxkiki ikTxkT4.The4.TheOnsager’sreciprocalTheheatconductivitykijinanisotropiccrystalsisasymmetricalsecond-rankkijkThisassumptionisjustifiablebynomeansobvious.Itasserts,forexample,that,ifatemperaturegradientinthex1directionproducesacertainheatflowinthex2direction(givenbyk21),thesametemperaturegradientappliedinthex2directionwouldgivenaheatflowofpreciselythesamemagnitudeinthex1direction(givenbyk12).Toseewhatisinvolvedintheassumptionitishelpfulfirsttodiscoverwhattheconsequenceswouldbeif(4)didnothold.ΔT—x1directionh—x2ΔT—x2directionh—x1Firstsplit[kij]intoasymmetricalandananti-symmetrical k31 k31 000k330k23kk0 k3323Thepresenceofsymmetryinthecrystalwilltendtoimposerestrictionsonthisschemeofcoefficients.Bywayofillustrationwetakethecaseofacrystalhavinga2-,3-,4-,or6-foldaxis(eitherrotationorinverse)paralleltox3.ifatemperaturegradientsisestablishedparalleltox3,theheatflowmustalsobeparalleltox3,bysymmetry.Hence1→2,2→-1,3k23k31x1 0k00k33K12=-LarsOnsager(November27,1903–October5,1976)wasaNorwegian-bornAmericanphysicalchemistandtheoreticalphysicist,winnerofthe1968NobelPrizeinChemistry.HeheldtheGibbsProfessorshipofTheoreticalChemistryatYale进入挪威诺尔格斯工学院主修化学工程,2年至9年,9年移居美国,年~939年诺贝尔化学奖。昂萨格在1萨格名誉工学博士学位,以弥补当年的失误 Thisisageneralprinciplewhichappliestoalltransportphenomena—underwhichtermmaybeincludedtheconductionofheat,theconductionofelectricity,andthetransportofmatterthattakesplacebydiffusion.Inthermodynamics,theOnsagerreciprocalrelationsexpresstheequalityofcertainratiosbetweenflowsandforcesinthermodynamicsystemsoutofequilibrium,butwhereanotionoflocalequilibriumexists.Theolderthermodynamicshasbeenmoreaccuratelydescribedas“thermostatics”;incontrast,Onsager’stheoryisessentiallythethermodynamicsofirreversibleTheequationgoverningtheflowofanelectriccurrentinanisotropicjMaybejL 1J1representsaflux(ofcharge)andX1representsaInInthesamewaythefluxofheatisproportionaltotheforceontheheataccordingtotheequationjL 2Wherethefluxj2istheheatflow,formerlydesignatedbyh,andtheforceX2=-1/TgradT.thereasonforthefactor1/Twillbereferredtolater(Tistheabsolutetemperature).Equations(23)and(24)wouldbecorrectastheystandifthetwoprocessesoftransportofelectricityandofheattookplaceindependentlyofoneanother.But,ingeneral,thisconditionisnotsatisfied;forwhenthetwoprocessesoccursimultaneouslyinacircuitcomposedoftwodifferentmetalstheyinterfere,asisshownbytheappearanceofthevariousthermoelectriceffects.Ingeneralitisnecessarytousethemorecomprehensiveequations.jLXLXj1L11X1L12X2 21 222Inwhicheachofthefluxesislinearlyrelatedtoboththeforcesinsteadofonlytooneofthem.Onsagerstatesthatinsuchacase,providedthefluxesandforcesarecorrectlychosen.L12=L21Itmaybeverifiedthat,withourchoiceofdefinitionsforthej’sandX’sthedimensionsofL12andL21arethesame.InmoreInmorecomplicatedsituations,wheretheremorethantwofluxesandforces,equations(25)aregeneralizedjL i,j1,2,, ijandOnsager’sPrincipleassertsL Itisimportanttonoticethatthej’sandX’sin(25)and(27)mustbecorrectlychosenbeforeOnsager’sPrinciplecanbeapplied.By“cor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论