风力发电系统建模与仿真_第1页
风力发电系统建模与仿真_第2页
风力发电系统建模与仿真_第3页
风力发电系统建模与仿真_第4页
风力发电系统建模与仿真_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

#对于给定的p,有且仅有一个固定的X=x能使C达到最大值;optP九在风速不断变化的情况下,要保持九、3必须随着风速按照*的比例变化,才optturr能保证风力机捕获的风能最大、效率最高。这是采用变速风电机组代替固定转速风电机组的初衷之一。图2-4风机C-九特性曲线P对于变桨距型风力发电机组,C特性可近似表示为:P(RC°)0255RcC=0.5f-0.022p—2e一0255兀p九式中,C为叶片设计常数,一般取1~3。f2、风力机的稳定工作区空间曲面虽然能包含风力机运行的所有状态点,但是对于分析不太方便,所以在实际应用中多是取几个离散的卩值,画出平面图的方法,如下图所示,取6组卩值,绘制如下:图2-5风力机稳定工作区曲线图在T(3,v)曲线中,以转矩T的最大值为顶点连成的一条线AB,将曲线簇分成了两部分,

其中右侧为稳定运行区域,左侧部分为不稳定工作区域。对比P,v)和T(⑷,v)曲线,我们发现当T达到最大时,P并没有达到最大,具体而言,就是最大功率点对应的转速值要大于最大转矩点的转速值。曲线CD是由最大转矩点的连线而成的,曲线EF则是由最大功率点的连线而成。这样一来,在Pv)曲线簇中,CD曲线和EF曲线之间的部分也是稳定区域。3、基于叶素理论的风力机建模基于叶素理论的风轮建模是将叶片分为若干个微元,称为叶素,通过对叶素的受力分析求得微元转矩,再将所有微元转矩相加得到风力发电机风轮的输出转矩[5,75],在风轮半径r处取一长度为dr的叶素,其弦长为1,节距角为0。如上图所示,来流方向的风速为v,在半径为r处的风轮机速度为u-r(w为风轮tt机角速度),气流相对于叶片的相对速度为w,则有:叶素dr在相对速度为w的气流作用下,受到一个方向斜向上的气动力dF的作用。将dF沿与相对速度w垂直及水平方向可分解为升力dL和阻力dD,当dr很小时,可以近似的将叶素面积看成弦长与叶素长度的乘积,可得如下计算公式:dL=2pClw2dr

dD=2pcdiw2dr气动力dF按垂直和平行于旋转平面方向分解为法向力dF和切向力dF,风轮转矩dTau由切向力dF产生,则有转矩微元:=rQl=rQl-sinI一dD-cosdT=r-dF

令£=C/C,得总转矩计算公式:T=nT=n」dT=n』2prlw2Csin1c-8-cot1)drro上式为基于叶素理论的风轮模型函数,可以写为如下形式:T=f(v,u,0),即风轮输出转矩为风速v,风轮转速u,桨距角0的函数。4、基于PSCAD风力机模型与仿真基于PSCAD的风力机模型如下:Wiic-u"biner-ion/—讣Tm■rvTm■f-JiBetaBeta图2-7风力机简化模型基于上面的原理及理论公式,仿真结果如下:Title(Tordisplayonpiois.meters,...)GroupDisplaytrueonicon?Sc^leFactorUnit(Tordisplayonmgtar9:p.u.lkAl.„]Sa1^outpuldurinsMultipleRunonDefaurtMin/MaKLimits图2-8风轮机机械转矩输出及参数设置

O.O.OO.O.OOOO6„5时32101„O.O.OO.O.OOOO6„5时32101„2_■■Title(fordisplayonplDt3lme1ersl.BGroup匚li?卩怕ytitleonicon?ScaleFactorUnit(fordisplayonmeters.p.u.^A...)SaveoutputduringMultipleF?unonDefaultMin(Limils图2-10风轮机机械功率输出及参数设置■FT•II.IIi_,i,,iIWin:Graplis0.05.010.015.020025.030.0图2-11风轮机机械功率模拟仿真结果由上述两图曲线可知,风轮机的输出转矩和输出功率都是标幺值,则它们的曲线是完全一致的,在0~3s时变桨距控制系统在调节桨叶节距使转矩和功率输出逐渐达到稳定,由于又突然受到在3s与4s分别受到阵行风与渐变风的影响,从而使波形在这两个时间有的突变,之后继续达到稳定。3变桨距风力发电机组控制系统模型3.1变桨距风力发电机组的运行状态变桨距风力发电机组根据变距系统所起的作用可分为三种运行状态,即风力发电机组的起动状态(转速控制)、欠功率控制(不控制)和额定功率状态(功率控制)。由于变桨距系统的响应速度受到限制,对快速变化的风速,通过改变节距来控制输出功率的效果并不理想。因此,为了优化功率曲线,最新设计的变桨风力发电机组在进行功率控制的过程中,其功率反馈信号不再作为直接控制桨叶节距的变量。变桨距系统由风速低频分量和发电机转速控制,风速的高频分量产生的机械能波动,通过迅速改变发电机的转速来进行平衡,即通过转子电流控制器对发电机转差率进行控制,当风速高于额定风速时,允许发电机转速升高,将瞬变的风能以风轮动能的形式储存起来;转速降低时,再将动能释放出来,

使功率曲线达到理想的状态。3.2变桨距控制系统1、变桨距控制系统工作原理图3-1图3-1变桨距控制系统工作原理图在发电机并入电网时前,发电机转速由速度控制器A根据发电机转速反馈信号与给定信号直接控制;发电机并入电网后,速度控制B与功率控制器起作用。功率控制器的任务主要是根据发电机转速给出相应的功率曲线,调整发电机转差率,并确定速度控制器B的速度给定。节距的给定参考值由控制器根据风力发电机组的运行状态给出。如图3-1所示,当风力发电机组并入电网前,由速度控制器A给出;当风力发电机组并入电网后由速度控制B给出。2、变距控制变距控制系统是一个随动系统。变距控制器是一个非线性比例控制器,它可以补偿比例阀的死带和极限。变距系统的执行机构是液压系统,节距控制器的输出信号经D/A转换后变成电压信号控制比例阀(或电液伺服阀),驱动液压缸活塞,推动变桨距机构,使桨叶节距角变化。活塞的位移反馈信号由位移传感器测量,经转换后输入比较器。控制电压活塞杆位移4液压变桨距系统机构节距图控制电压活塞杆位移4液压变桨距系统机构节距图3-2变距控制结构框图3、速度控制器A转速控制器A在风力发电机组进入待机状态或从待机状态重新起动时投入工作,在这些过程中通过对节距角的控制,转速以一定的变化率上升。控制器也用于在同步速(50Hz时1500转/min)时的控制。当发电机转速在同步转速±10rfmin内持续Is发电机将切入电网。控制器包含着常规的PD控制器和PI控制器,接着是节距角的非线性化环节,通过非线性化处理,增益随节距角的增加而减小,以此补偿由于转子空气动力学产生的非线性,因为当功率不变时,转矩对节距角的比是随节距角的增加而增加的。节距非线性化F距洽定-病波蛊_节距非线性化F距洽定-病波蛊_|BPDPI-mA控制冠控制器计时器*图3-3速度控制器A当风力发电机组从待机状态进入运行状态时,变桨距系统先将桨叶节距角快速地转到45°,风轮在空转状态进入同步转速。当转速从0增加到1500rmin时,节距角给定值从45°线性的减小到5°。这一过程不仅使转子具有高起动力矩,而且在风速快速地增大时能够快速起动。4、速度控制器B发电机切入电网后,速度控制系统B作用。如图2-11所示,速度控制器B受发电机转速和风速的双重控制。在达到额定值前,速度给定值随功率给定值按比例增加。额定的速度给定值是1569r/min,相应的发电机转差率是4%。如果风速和功率输出一直低于额定值,发电机转差率将降低到2%,节距控制将根据风速调整到最佳状态,以优化叶尖速比。如果风速高于额定值,发电机转速通过改变节距来跟踪相应的速度给定值。功率输出将稳定地保持在额定值上。从图中可知在风速信号输入端设有低通滤波器,节距控制对瞬变风速并不响应。

4风力发电控制系统的模拟仿真分析4.1无穷大系统模型的建立图4-1风力发电机无穷大系统模型AAec图4-1风力发电机无穷大系统模型AAecc63121.0103.0[MtfA]4.2风力发电机系统并网模拟仿真分析1、发电机三相电压输出及仿真结果分析EboEcTitle(fordisplayonplots.nneters,...)GroupDispla/titleonicon?4.2风力发电机系统并网模拟仿真分析1、发电机三相电压输出及仿真结果分析EboEcTitle(fordisplayonplots.nneters,...)GroupDispla/titleonicon?ScaleFactorUnit(fordim卩layonmeters:p.u.,kA,■■■)SaveoutputduringMultipleRunonDefaultMin/MaxLimits[7jh图4-2异步发电机发电机三相电压输出及参数设置050505050O-752O-23-7Q

jQoaaq-0.-0.-1.skbin:050505050O-752O-23-7Q

jQoaaq-0.-0.-1.skbin:Gratis■旦0.05.010.015.020.025.030.0Main:Graphso.'o5.0io'.o15.02O'.O2&'.O3O'.OMain:Graphso.'o5.0io'.o15.02O'.O25.Q3O'.O图4-3异步发电机发电机三相电压模拟仿真结果Main:Graphs图4-4高压母线电压模拟仿真结果异步发电机三相电压模拟仿真结果分析如图4-3所示,在发电机并入电网前低压侧电压为0,在Is时发电机并入电网,电压突然上升到接近于额定电压,发电机向电网输送功率。并网后的功率输出逐渐趋于稳定,这时的电压曲线呈正弦曲线形状变化,向电网输送额定功率。2、低压母线和高压母线的线电压输出及仿真结果分析

Main:Graph16021)1401201008060402000.02.04.06.08.010.012.014.016.018.020.0图4-5低压母线和高压母线的线电压输出及仿真结果在正常运行时,低压母线和高压母线电压均从0迅速上升并均达到各自的额定值,然后一直保持稳定。低压母线电压稳定在0.69kV左右,高压母线电压稳定在121kV左右。3、低压母线相电流输出及仿真结果分析并网前电流为0,在1s时断路器合闸并网,出现很大的冲击电流,其冲击电流值达到11KA,最后开始衰减至0.07KA,然后又开始上升,最后趋于稳定,其电流最大稳定值为0.64KA。

健iin:Graphs■la4,0厂一2.00.0-<-2.0-■6,0健iin:Graphs■la4,0厂一2.00.0-<-2.0-■6,0-8.0-6.0-$0.0--3.0-0.010.015l020.025.030.0图4-7低压母线相电流输出及仿真结果4.3变桨距控制系统模拟仿真分析图4-8变桨距控制系统模拟仿真结果通过控制桨距角的大小的改变就可以控制叶片吸收风功率的多少,桨距角的调节可以使发电机输出功率平稳。变桨距控制系统模仿真结果分析如下:风轮机启动时风力发电机组开始自动运行于风轮叶尖本来值90°,即桨矩角初始值为90度,在机组起动的过程中逐渐变小,这样叶片吸收风能逐渐增大,叶片的转速也逐渐加快,最后在1.4s时桨矩角变为零,且保持不变,此时叶片吸收风能达到了最大。5结论本文通过PSCAD/EMTDC电力系统模拟仿真软件,建立了变桨距风力发电机组控制系统模型,对加入控制系统的风力发电样例系统进行模拟仿真分析,验证了控制系统模型的可用性。风力发电系统控制策略是以风速的变化为依据,风能的最大利用效率为目的,为优化风力发电系统运行特性提出的控制方案。变桨距控制系统的设计主要采用PI控制器,根据发电机有功功率输出和风轮机转速反馈来调节桨叶节距。通过风轮机桨距角控制系统对叶片桨距角进行控制,使风力发电机组的机械部分与发电机的电气部分配合,达到提高风能利用效率及改善供电质量的目的。利用风力发电样例系统来验证控制系统的可用性,并对各种仿真曲线进行分析,从而得出结论。根据风速模型的仿真曲线,分析风轮机和发电机各部分曲线的变化情况和整个系统的仿真曲线图。在并网以前电压的波形基本上是正弦形状的,转速基本上是稳定的。并网以后虽然受到了电网的干扰,但转速上升到额定转速后再没有多大变化;电流的波形虽然是正弦的,但整体的趋向也发生了相应的波动。变桨距控制系统在风力发电机组起动时,通过变距来获得足够的起动转矩;起动以后,当低于额定风速运行时的机组状态控制为转速,当高于额定风速运行时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使功率输出保持稳定。额定风速之后的机组状态控制主要由桨距角调节实现。得到的控制系统保持了风力发电机组运行的安全可靠性。参考文献黄素逸.能源与节能技术[M].北京中国电力出版社,2004.金鑫.风力发电机组系统建模与仿真研究[D].重庆大学,2007.李兴国,何玉林,金鑫•风力发电机组系统建模与仿真[J].重庆大学学报,2008,11:1226-1230.李兴国.风电机组系统分析关键技术研究及应用[D].重庆大学,2009.刘思.风电机组风轮与传动链的建模与仿真研究[D].华北电力大学,2013.高峰.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论