版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5
DiscreteProbabilityDistributions.10.20.30.400
1
234RandomVariablesDiscreteProbabilityDistributionsExpectedValueandVarianceBinomialProbabilityDistributionPoissonProbabilityDistributionHypergeometricProbabilityDistributionArandomvariableisanumericaldescriptionoftheoutcomeofanexperiment.RandomVariablesAdiscreterandomvariablemayassumeeitherafinitenumberofvaluesoraninfinitesequenceofvalues.Acontinuousrandomvariablemayassumeanynumericalvalueinanintervalorcollectionofintervals.Letx=numberofTVssoldatthestoreinoneday, wherexcantakeon5values(0,1,2,3,4)Example:JSLAppliancesDiscreteRandomVariablewithaFiniteNumberofValuesWecancounttheTVssold,andthereisafiniteupperlimitonthenumberthatmightbesold(whichisthenumberofTVsinstock).Letx=numberofcustomersarrivinginoneday, wherexcantakeonthevalues0,1,2,...DiscreteRandomVariablewithanInfiniteSequenceofValuesWecancountthecustomersarriving,butthereisnofiniteupperlimitonthenumberthatmightarrive.Example:JSLAppliancesRandomVariablesQuestionRandomVariablexTypeFamilysizex=NumberofdependentsreportedontaxreturnDiscreteDistancefromhometostorex=DistanceinmilesfromhometothestoresiteContinuousOwndogorcatx=1ifownnopet;=2ifowndog(s)only;=3ifowncat(s)only;=4ifowndog(s)andcat(s)DiscreteTheprobabilitydistributionforarandomvariabledescribeshowprobabilitiesaredistributedoverthevaluesoftherandomvariable.Wecandescribeadiscreteprobabilitydistributionwithatable,graph,orformula.DiscreteProbabilityDistributionsTheprobabilitydistributionisdefinedbya
probabilityfunction,denotedbyf(x),whichprovidestheprobabilityforeachvalueoftherandomvariable.Therequiredconditionsforadiscreteprobabilityfunctionare:DiscreteProbabilityDistributionsf(x)>0
f(x)=1atabularrepresentationoftheprobabilitydistributionforTVsaleswasdeveloped.UsingpastdataonTVsales,… Number
UnitsSold
ofDays 0 80 1 50 2 40 3 10 4 20 200
x
f(x)0 .401 .252 .203 .054 .101.0080/200DiscreteProbabilityDistributionsExample:JSLAppliances.10.20.30.40.500
12
3
4ValuesofRandomVariablex(TVsales)ProbabilityDiscreteProbabilityDistributionsExample:JSLAppliancesGraphicalrepresentationofprobabilitydistributionDiscreteUniformProbabilityDistributionThediscreteuniformprobabilitydistributionisthesimplestexampleofadiscreteprobabilitydistributiongivenbyaformula.Thediscreteuniformprobabilityfunctionisf(x)=1/nwhere:
n=thenumberofvaluestherandom variablemayassumethevaluesoftherandomvariableareequallylikelyExpectedValueTheexpectedvalue,ormean,ofarandomvariableisameasureofitscentrallocation.Theexpectedvalueisaweightedaverageofthevaluestherandomvariablemayassume.Theweightsaretheprobabilities.Theexpectedvaluedoesnothavetobeavaluetherandomvariablecanassume.E(x)=
=
xf(x)VarianceandStandardDeviationThevariancesummarizesthevariabilityinthevaluesofarandomvariable.Thevarianceisaweightedaverageofthesquareddeviationsofarandomvariablefromitsmean.Theweightsaretheprobabilities.Var(x)=
2=
(x-
)2f(x)Thestandarddeviation,
,isdefinedasthepositivesquarerootofthevariance.expectednumberofTVssoldinaday
x
f(x)
xf(x)0 .40 .001 .25 .252 .20 .403 .05 .154 .10 .40
E(x)=1.20ExpectedValueExample:JSLAppliances01234-1.2-0.20.81.82.81.440.040.643.247.84.40.25.20.05.10.576.010.128.162.784x-
(x-
)2f(x)(x-
)2f(x)Varianceofdailysales=s2=1.660xTVssquaredStandarddeviationofdailysales=1.2884TVsVarianceExample:JSLAppliancesBinomialProbabilityDistributionFourPropertiesofaBinomialExperiment3.Theprobabilityofasuccess,denotedbyp,doesnotchangefromtrialtotrial.4.Thetrialsareindependent.2.Twooutcomes,successandfailure,arepossibleoneachtrial.1.Theexperimentconsistsofasequenceofnidenticaltrials.stationarityassumptionBinomialProbabilityDistributionOurinterestisinthenumberofsuccessesoccurringinthentrials.Weletxdenotethenumberofsuccessesoccurringinthentrials.where:
x=thenumberofsuccessesp=theprobabilityofasuccessononetrialn=thenumberoftrials
f(x)=theprobabilityofxsuccessesinn
trialsn!=n(n–1)(n–2)…..(2)(1)
BinomialProbabilityDistributionBinomialProbabilityFunctionBinomialProbabilityDistributionBinomialProbabilityFunctionProbabilityofaparticularsequenceoftrialoutcomeswithxsuccessesinntrialsNumberofexperimentaloutcomesprovidingexactlyxsuccessesinntrialsBinomialProbabilityDistributionExample:EvansElectronicsEvansElectronicsisconcernedaboutalowretentionrateforitsemployees.Inrecentyears,managementhasseenaturnoverof10%ofthehourlyemployeesannually.Choosing3hourlyemployeesatrandom,whatistheprobabilitythat1ofthemwillleavethecompanythisyear? Thus,foranyhourlyemployeechosenatrandom,managementestimatesaprobabilityof0.1thatthepersonwillnotbewiththecompanynextyear.BinomialProbabilityDistributionExample:EvansElectronicsTheprobabilityofthefirstemployeeleavingandthesecondandthirdemployeesstaying,denoted(S,F,F),isgivenby
p(1–p)(1–p)Witha.10probabilityofanemployeeleavingonanyonetrial,theprobabilityofanemployeeleavingonthefirsttrialandnotonthesecondandthirdtrialsisgivenby
(.10)(.90)(.90)=(.10)(.90)2=.081BinomialProbabilityDistributionExample:EvansElectronicsTwootherexperimentaloutcomesalsoresultinonesuccessandtwofailures.Theprobabilitiesforallthreeexperimentaloutcomesinvolvingonesuccessfollow.ExperimentalOutcome(S,F,F)(F,S,F)(F,F,S)ProbabilityofExperimentalOutcomep(1–p)(1–p)=(.1)(.9)(.9)=.081(1–p)p(1–p)=(.9)(.1)(.9)=.081(1–p)(1–p)p=(.9)(.9)(.1)=.081Total=.243BinomialProbabilityDistributionLet:p=.10,n=3,x=1Example:EvansElectronicsUsingtheprobabilityfunctionBinomialProbabilityDistribution
1stWorker2ndWorker3rdWorkerxProb.Leaves(.1)Stays(.9)32022Leaves(.1)Leaves(.1)S(.9)Stays(.9)Stays(.9)S(.9)S(.9)S(.9)L(.1)L(.1)L(.1)L(.1).0010.0090.0090.7290.009011.0810.0810.08101Example:EvansElectronicsUsingatreediagramBinomialProbabilitiesandCumulativeProbabilitiesWithmoderncalculatorsandthecapabilityofstatisticalsoftwarepackages,suchtablesarealmostunnecessary.Thesetablescanbefoundinsomestatisticstextbooks.Statisticianshavedevelopedtablesthatgiveprobabilitiesandcumulativeprobabilitiesforabinomialrandomvariable.BinomialProbabilityDistributionE(x)=
=npVar(x)=
2=np(1-
p)ExpectedValueVarianceStandardDeviationBinomialProbabilityDistributionE(x)=np
=3(.1)=.3employeesoutof3Var(x)=np(1–p)=3(.1)(.9)=.27ExpectedValueVarianceStandardDeviationExample:EvansElectronicsAPoissondistributedrandomvariableisoftenusefulinestimatingthenumberofoccurrencesoveraspecifiedintervaloftimeorspaceItisadiscreterandomvariablethatmayassumeaninfinitesequenceofvalues(x=0,1,2,...).PoissonProbabilityDistributionExamplesofaPoissondistributedrandomvariable:thenumberofknotholesin14linearfeetofpineboardthenumberofvehiclesarrivingatatollboothinonehourPoissonProbabilityDistributionBellLabsusedthePoissondistributiontomodelthearrivalofphonecalls.PoissonProbabilityDistributionTwoPropertiesofaPoissonExperimentTheoccurrenceornonoccurrenceinanyintervalisindependentoftheoccurrenceornonoccurrenceinanyotherinterval.Theprobabilityofanoccurrenceisthesameforanytwointervalsofequallength.PoissonProbabilityFunctionPoissonProbabilityDistributionwhere:
x=thenumberofoccurrencesinanintervalf(x)=theprobabilityofxoccurrencesinaninterval
=meannumberofoccurrencesinaninterval
e
=2.71828x!=x(x–1)(x–2)...(2)(1)PoissonProbabilityDistributionPoissonProbabilityFunctionInpracticalapplications,xwilleventuallybecomelargeenoughsothatf(x)isapproximatelyzeroandtheprobabilityofanylargervaluesofxbecomesnegligible.Sincethereisnostatedupperlimitforthenumberofoccurrences,theprobabilityfunctionf(x)isapplicableforvaluesx=0,1,2,…withoutlimit.PoissonProbabilityDistributionExample:MercyHospitalPatientsarriveattheemergencyroomofMercyHospitalattheaveragerateof6perhouronweekendevenings.Whatistheprobabilityof4arrivalsin30minutesonaweekendevening?PoissonProbabilityDistribution
=6/hour=3/half-hour,x=4Example:MercyHospitalUsingtheprobabilityfunctionPoissonProbabilityDistributionPoissonProbabilities0.000.050.100.150.200.25012345678910NumberofArrivalsin30MinutesProbabilityactually,thesequencecontinues:11,12,…Example:MercyHospitalPoissonProbabilityDistributionApropertyofthePoissondistributionisthatthemeanandvarianceareequal.
m=s2PoissonProbabilityDistributionVarianceforNumberofArrivals During30-MinutePeriods m=s
2=3Example:MercyHospitalHypergeometricProbabilityDistributionThehypergeometricdistributioniscloselyrelatedtothebinomialdistribution.However,forthehypergeometricdistribution:thetrialsarenotindependent,andtheprobabilityofsuccesschangesfromtrialtotrial.HypergeometricProbabilityFunctionHypergeometricProbabilityDistributionwhere:
x
=numberofsuccesses
n
=numberoftrialsf(x)=probabilityofxsuccessesinntrials
N=numberofelementsinthepopulation
r=numberofelementsinthepopulation labeledsuccessHypergeometricProbabilityFunctionHypergeometricProbabilityDistributionfor0<
x
<
rnumberofwaysxsuccessescanbeselectedfromatotalofrsuccessesinthepopulationnumberofwaysn–xfailurescanbeselectedfromatotalofN–rfailuresinthepopulationnumberofwaysnelementscanbeselectedfromapopulationofsizeNHypergeometricProbabilityDistributionHypergeometricProbabilityFunctionIfthesetwoconditionsdonotholdforavalueofx,thecorrespondingf(x)equals0.However,onlyvaluesofxwhere:1)x
<
rand2)n–x
<
N–rarevalid.Theprobabilityfunctionf(x)onthepreviousslideisusuallyapplicableforvaluesofx=0,1,2,…n.HypergeometricProbabilityDistributionBobNevereadyhasremovedtwodeadbatteriesfromaflashlightandinadvertentlymingledthemwiththetwogoodbatteriesheintendedasreplacem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026江西南昌市十字街学校招聘派遣制教师备考题库及一套答案详解
- 2026江西赣州赣职网管理咨询有限公司招聘2名工作人员备考题库附参考答案详解(基础题)
- 2026年洁面仪洗脸仪项目可行性研究报告
- 2026年先进封装Fan-out技术项目可行性研究报告
- 2026福建厦门湖里中学招聘初中英语、数学外聘教师的4人备考题库有完整答案详解
- 吉州区水利局公开招聘公益性岗位工作人员备考题库附参考答案详解(能力提升)
- 2026河南周口市中心医院劳务派遣岗位招聘4人备考题库含答案详解(满分必刷)
- 2026贵州铝业集团双元新材料有限责任公司招聘6人备考题库带答案详解(培优b卷)
- 沪2026年事业单位招聘备考题库及一套答案详解
- 2026辽宁大连工业大学招聘非事业编制工作人员3人备考题库及一套完整答案详解
- 传染性疾病控制副高考试真题及答案
- 巡察流程工作培训
- 2025年福建高考数学试题及答案
- 湖南省多测合一收费指导标准(试行)2024年版
- 现场提升活动方案
- 混凝土环保管理制度
- 个人投资公司合同标准文本
- 医保管理工作制度96012
- 治疗性低温技术临床应用进展
- GB/T 16288-2024塑料制品的标志
- 2024年版《输变电工程标准工艺应用图册》
评论
0/150
提交评论