




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5
DiscreteProbabilityDistributions.10.20.30.400
1
234RandomVariablesDiscreteProbabilityDistributionsExpectedValueandVarianceBinomialProbabilityDistributionPoissonProbabilityDistributionHypergeometricProbabilityDistributionArandomvariableisanumericaldescriptionoftheoutcomeofanexperiment.RandomVariablesAdiscreterandomvariablemayassumeeitherafinitenumberofvaluesoraninfinitesequenceofvalues.Acontinuousrandomvariablemayassumeanynumericalvalueinanintervalorcollectionofintervals.Letx=numberofTVssoldatthestoreinoneday, wherexcantakeon5values(0,1,2,3,4)Example:JSLAppliancesDiscreteRandomVariablewithaFiniteNumberofValuesWecancounttheTVssold,andthereisafiniteupperlimitonthenumberthatmightbesold(whichisthenumberofTVsinstock).Letx=numberofcustomersarrivinginoneday, wherexcantakeonthevalues0,1,2,...DiscreteRandomVariablewithanInfiniteSequenceofValuesWecancountthecustomersarriving,butthereisnofiniteupperlimitonthenumberthatmightarrive.Example:JSLAppliancesRandomVariablesQuestionRandomVariablexTypeFamilysizex=NumberofdependentsreportedontaxreturnDiscreteDistancefromhometostorex=DistanceinmilesfromhometothestoresiteContinuousOwndogorcatx=1ifownnopet;=2ifowndog(s)only;=3ifowncat(s)only;=4ifowndog(s)andcat(s)DiscreteTheprobabilitydistributionforarandomvariabledescribeshowprobabilitiesaredistributedoverthevaluesoftherandomvariable.Wecandescribeadiscreteprobabilitydistributionwithatable,graph,orformula.DiscreteProbabilityDistributionsTheprobabilitydistributionisdefinedbya
probabilityfunction,denotedbyf(x),whichprovidestheprobabilityforeachvalueoftherandomvariable.Therequiredconditionsforadiscreteprobabilityfunctionare:DiscreteProbabilityDistributionsf(x)>0
f(x)=1atabularrepresentationoftheprobabilitydistributionforTVsaleswasdeveloped.UsingpastdataonTVsales,… Number
UnitsSold
ofDays 0 80 1 50 2 40 3 10 4 20 200
x
f(x)0 .401 .252 .203 .054 .101.0080/200DiscreteProbabilityDistributionsExample:JSLAppliances.10.20.30.40.500
12
3
4ValuesofRandomVariablex(TVsales)ProbabilityDiscreteProbabilityDistributionsExample:JSLAppliancesGraphicalrepresentationofprobabilitydistributionDiscreteUniformProbabilityDistributionThediscreteuniformprobabilitydistributionisthesimplestexampleofadiscreteprobabilitydistributiongivenbyaformula.Thediscreteuniformprobabilityfunctionisf(x)=1/nwhere:
n=thenumberofvaluestherandom variablemayassumethevaluesoftherandomvariableareequallylikelyExpectedValueTheexpectedvalue,ormean,ofarandomvariableisameasureofitscentrallocation.Theexpectedvalueisaweightedaverageofthevaluestherandomvariablemayassume.Theweightsaretheprobabilities.Theexpectedvaluedoesnothavetobeavaluetherandomvariablecanassume.E(x)=
=
xf(x)VarianceandStandardDeviationThevariancesummarizesthevariabilityinthevaluesofarandomvariable.Thevarianceisaweightedaverageofthesquareddeviationsofarandomvariablefromitsmean.Theweightsaretheprobabilities.Var(x)=
2=
(x-
)2f(x)Thestandarddeviation,
,isdefinedasthepositivesquarerootofthevariance.expectednumberofTVssoldinaday
x
f(x)
xf(x)0 .40 .001 .25 .252 .20 .403 .05 .154 .10 .40
E(x)=1.20ExpectedValueExample:JSLAppliances01234-1.2-0.20.81.82.81.440.040.643.247.84.40.25.20.05.10.576.010.128.162.784x-
(x-
)2f(x)(x-
)2f(x)Varianceofdailysales=s2=1.660xTVssquaredStandarddeviationofdailysales=1.2884TVsVarianceExample:JSLAppliancesBinomialProbabilityDistributionFourPropertiesofaBinomialExperiment3.Theprobabilityofasuccess,denotedbyp,doesnotchangefromtrialtotrial.4.Thetrialsareindependent.2.Twooutcomes,successandfailure,arepossibleoneachtrial.1.Theexperimentconsistsofasequenceofnidenticaltrials.stationarityassumptionBinomialProbabilityDistributionOurinterestisinthenumberofsuccessesoccurringinthentrials.Weletxdenotethenumberofsuccessesoccurringinthentrials.where:
x=thenumberofsuccessesp=theprobabilityofasuccessononetrialn=thenumberoftrials
f(x)=theprobabilityofxsuccessesinn
trialsn!=n(n–1)(n–2)…..(2)(1)
BinomialProbabilityDistributionBinomialProbabilityFunctionBinomialProbabilityDistributionBinomialProbabilityFunctionProbabilityofaparticularsequenceoftrialoutcomeswithxsuccessesinntrialsNumberofexperimentaloutcomesprovidingexactlyxsuccessesinntrialsBinomialProbabilityDistributionExample:EvansElectronicsEvansElectronicsisconcernedaboutalowretentionrateforitsemployees.Inrecentyears,managementhasseenaturnoverof10%ofthehourlyemployeesannually.Choosing3hourlyemployeesatrandom,whatistheprobabilitythat1ofthemwillleavethecompanythisyear? Thus,foranyhourlyemployeechosenatrandom,managementestimatesaprobabilityof0.1thatthepersonwillnotbewiththecompanynextyear.BinomialProbabilityDistributionExample:EvansElectronicsTheprobabilityofthefirstemployeeleavingandthesecondandthirdemployeesstaying,denoted(S,F,F),isgivenby
p(1–p)(1–p)Witha.10probabilityofanemployeeleavingonanyonetrial,theprobabilityofanemployeeleavingonthefirsttrialandnotonthesecondandthirdtrialsisgivenby
(.10)(.90)(.90)=(.10)(.90)2=.081BinomialProbabilityDistributionExample:EvansElectronicsTwootherexperimentaloutcomesalsoresultinonesuccessandtwofailures.Theprobabilitiesforallthreeexperimentaloutcomesinvolvingonesuccessfollow.ExperimentalOutcome(S,F,F)(F,S,F)(F,F,S)ProbabilityofExperimentalOutcomep(1–p)(1–p)=(.1)(.9)(.9)=.081(1–p)p(1–p)=(.9)(.1)(.9)=.081(1–p)(1–p)p=(.9)(.9)(.1)=.081Total=.243BinomialProbabilityDistributionLet:p=.10,n=3,x=1Example:EvansElectronicsUsingtheprobabilityfunctionBinomialProbabilityDistribution
1stWorker2ndWorker3rdWorkerxProb.Leaves(.1)Stays(.9)32022Leaves(.1)Leaves(.1)S(.9)Stays(.9)Stays(.9)S(.9)S(.9)S(.9)L(.1)L(.1)L(.1)L(.1).0010.0090.0090.7290.009011.0810.0810.08101Example:EvansElectronicsUsingatreediagramBinomialProbabilitiesandCumulativeProbabilitiesWithmoderncalculatorsandthecapabilityofstatisticalsoftwarepackages,suchtablesarealmostunnecessary.Thesetablescanbefoundinsomestatisticstextbooks.Statisticianshavedevelopedtablesthatgiveprobabilitiesandcumulativeprobabilitiesforabinomialrandomvariable.BinomialProbabilityDistributionE(x)=
=npVar(x)=
2=np(1-
p)ExpectedValueVarianceStandardDeviationBinomialProbabilityDistributionE(x)=np
=3(.1)=.3employeesoutof3Var(x)=np(1–p)=3(.1)(.9)=.27ExpectedValueVarianceStandardDeviationExample:EvansElectronicsAPoissondistributedrandomvariableisoftenusefulinestimatingthenumberofoccurrencesoveraspecifiedintervaloftimeorspaceItisadiscreterandomvariablethatmayassumeaninfinitesequenceofvalues(x=0,1,2,...).PoissonProbabilityDistributionExamplesofaPoissondistributedrandomvariable:thenumberofknotholesin14linearfeetofpineboardthenumberofvehiclesarrivingatatollboothinonehourPoissonProbabilityDistributionBellLabsusedthePoissondistributiontomodelthearrivalofphonecalls.PoissonProbabilityDistributionTwoPropertiesofaPoissonExperimentTheoccurrenceornonoccurrenceinanyintervalisindependentoftheoccurrenceornonoccurrenceinanyotherinterval.Theprobabilityofanoccurrenceisthesameforanytwointervalsofequallength.PoissonProbabilityFunctionPoissonProbabilityDistributionwhere:
x=thenumberofoccurrencesinanintervalf(x)=theprobabilityofxoccurrencesinaninterval
=meannumberofoccurrencesinaninterval
e
=2.71828x!=x(x–1)(x–2)...(2)(1)PoissonProbabilityDistributionPoissonProbabilityFunctionInpracticalapplications,xwilleventuallybecomelargeenoughsothatf(x)isapproximatelyzeroandtheprobabilityofanylargervaluesofxbecomesnegligible.Sincethereisnostatedupperlimitforthenumberofoccurrences,theprobabilityfunctionf(x)isapplicableforvaluesx=0,1,2,…withoutlimit.PoissonProbabilityDistributionExample:MercyHospitalPatientsarriveattheemergencyroomofMercyHospitalattheaveragerateof6perhouronweekendevenings.Whatistheprobabilityof4arrivalsin30minutesonaweekendevening?PoissonProbabilityDistribution
=6/hour=3/half-hour,x=4Example:MercyHospitalUsingtheprobabilityfunctionPoissonProbabilityDistributionPoissonProbabilities0.000.050.100.150.200.25012345678910NumberofArrivalsin30MinutesProbabilityactually,thesequencecontinues:11,12,…Example:MercyHospitalPoissonProbabilityDistributionApropertyofthePoissondistributionisthatthemeanandvarianceareequal.
m=s2PoissonProbabilityDistributionVarianceforNumberofArrivals During30-MinutePeriods m=s
2=3Example:MercyHospitalHypergeometricProbabilityDistributionThehypergeometricdistributioniscloselyrelatedtothebinomialdistribution.However,forthehypergeometricdistribution:thetrialsarenotindependent,andtheprobabilityofsuccesschangesfromtrialtotrial.HypergeometricProbabilityFunctionHypergeometricProbabilityDistributionwhere:
x
=numberofsuccesses
n
=numberoftrialsf(x)=probabilityofxsuccessesinntrials
N=numberofelementsinthepopulation
r=numberofelementsinthepopulation labeledsuccessHypergeometricProbabilityFunctionHypergeometricProbabilityDistributionfor0<
x
<
rnumberofwaysxsuccessescanbeselectedfromatotalofrsuccessesinthepopulationnumberofwaysn–xfailurescanbeselectedfromatotalofN–rfailuresinthepopulationnumberofwaysnelementscanbeselectedfromapopulationofsizeNHypergeometricProbabilityDistributionHypergeometricProbabilityFunctionIfthesetwoconditionsdonotholdforavalueofx,thecorrespondingf(x)equals0.However,onlyvaluesofxwhere:1)x
<
rand2)n–x
<
N–rarevalid.Theprobabilityfunctionf(x)onthepreviousslideisusuallyapplicableforvaluesofx=0,1,2,…n.HypergeometricProbabilityDistributionBobNevereadyhasremovedtwodeadbatteriesfromaflashlightandinadvertentlymingledthemwiththetwogoodbatteriesheintendedasreplacem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保行业供应商选择标准流程
- 数学游戏在幼儿园中的应用心得体会
- 乐器产业国际化发展-全面剖析
- 对外汉语专业实习挑战与应对总结
- 基于大数据的利率风险预测与控制研究-全面剖析
- 2025少先队员成长发展计划
- 远程教育青年教师培训计划
- 影视市场营销实习总结范文
- 免疫系统与二倍体细胞相互作用研究-全面剖析
- 二零二五三方委托借款合同的范例
- 水利水电工程质量监督工作标准
- 2024年云南省昆明市五华区小升初数学试卷
- 化工原理完整(天大版)课件
- 2025年元明粉项目可行性研究报告
- 艺术色彩解读
- 冲压生产管理流程
- DB32∕T 1670-2010 小麦纹枯病综合防治技术规程
- 2025下半年江苏盐城响水县部分事业单位招聘77人高频重点提升(共500题)附带答案详解
- 2025年杭州市能源集团招聘笔试参考题库含答案解析
- 企业环保知识培训课件
- 110kV立塔架线安全施工方案
评论
0/150
提交评论