




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5
DiscreteProbabilityDistributions.10.20.30.400
1
234RandomVariablesDiscreteProbabilityDistributionsExpectedValueandVarianceBinomialProbabilityDistributionPoissonProbabilityDistributionHypergeometricProbabilityDistributionArandomvariableisanumericaldescriptionoftheoutcomeofanexperiment.RandomVariablesAdiscreterandomvariablemayassumeeitherafinitenumberofvaluesoraninfinitesequenceofvalues.Acontinuousrandomvariablemayassumeanynumericalvalueinanintervalorcollectionofintervals.Letx=numberofTVssoldatthestoreinoneday, wherexcantakeon5values(0,1,2,3,4)Example:JSLAppliancesDiscreteRandomVariablewithaFiniteNumberofValuesWecancounttheTVssold,andthereisafiniteupperlimitonthenumberthatmightbesold(whichisthenumberofTVsinstock).Letx=numberofcustomersarrivinginoneday, wherexcantakeonthevalues0,1,2,...DiscreteRandomVariablewithanInfiniteSequenceofValuesWecancountthecustomersarriving,butthereisnofiniteupperlimitonthenumberthatmightarrive.Example:JSLAppliancesRandomVariablesQuestionRandomVariablexTypeFamilysizex=NumberofdependentsreportedontaxreturnDiscreteDistancefromhometostorex=DistanceinmilesfromhometothestoresiteContinuousOwndogorcatx=1ifownnopet;=2ifowndog(s)only;=3ifowncat(s)only;=4ifowndog(s)andcat(s)DiscreteTheprobabilitydistributionforarandomvariabledescribeshowprobabilitiesaredistributedoverthevaluesoftherandomvariable.Wecandescribeadiscreteprobabilitydistributionwithatable,graph,orformula.DiscreteProbabilityDistributionsTheprobabilitydistributionisdefinedbya
probabilityfunction,denotedbyf(x),whichprovidestheprobabilityforeachvalueoftherandomvariable.Therequiredconditionsforadiscreteprobabilityfunctionare:DiscreteProbabilityDistributionsf(x)>0
f(x)=1atabularrepresentationoftheprobabilitydistributionforTVsaleswasdeveloped.UsingpastdataonTVsales,… Number
UnitsSold
ofDays 0 80 1 50 2 40 3 10 4 20 200
x
f(x)0 .401 .252 .203 .054 .101.0080/200DiscreteProbabilityDistributionsExample:JSLAppliances.10.20.30.40.500
12
3
4ValuesofRandomVariablex(TVsales)ProbabilityDiscreteProbabilityDistributionsExample:JSLAppliancesGraphicalrepresentationofprobabilitydistributionDiscreteUniformProbabilityDistributionThediscreteuniformprobabilitydistributionisthesimplestexampleofadiscreteprobabilitydistributiongivenbyaformula.Thediscreteuniformprobabilityfunctionisf(x)=1/nwhere:
n=thenumberofvaluestherandom variablemayassumethevaluesoftherandomvariableareequallylikelyExpectedValueTheexpectedvalue,ormean,ofarandomvariableisameasureofitscentrallocation.Theexpectedvalueisaweightedaverageofthevaluestherandomvariablemayassume.Theweightsaretheprobabilities.Theexpectedvaluedoesnothavetobeavaluetherandomvariablecanassume.E(x)=
=
xf(x)VarianceandStandardDeviationThevariancesummarizesthevariabilityinthevaluesofarandomvariable.Thevarianceisaweightedaverageofthesquareddeviationsofarandomvariablefromitsmean.Theweightsaretheprobabilities.Var(x)=
2=
(x-
)2f(x)Thestandarddeviation,
,isdefinedasthepositivesquarerootofthevariance.expectednumberofTVssoldinaday
x
f(x)
xf(x)0 .40 .001 .25 .252 .20 .403 .05 .154 .10 .40
E(x)=1.20ExpectedValueExample:JSLAppliances01234-1.2-0.20.81.82.81.440.040.643.247.84.40.25.20.05.10.576.010.128.162.784x-
(x-
)2f(x)(x-
)2f(x)Varianceofdailysales=s2=1.660xTVssquaredStandarddeviationofdailysales=1.2884TVsVarianceExample:JSLAppliancesBinomialProbabilityDistributionFourPropertiesofaBinomialExperiment3.Theprobabilityofasuccess,denotedbyp,doesnotchangefromtrialtotrial.4.Thetrialsareindependent.2.Twooutcomes,successandfailure,arepossibleoneachtrial.1.Theexperimentconsistsofasequenceofnidenticaltrials.stationarityassumptionBinomialProbabilityDistributionOurinterestisinthenumberofsuccessesoccurringinthentrials.Weletxdenotethenumberofsuccessesoccurringinthentrials.where:
x=thenumberofsuccessesp=theprobabilityofasuccessononetrialn=thenumberoftrials
f(x)=theprobabilityofxsuccessesinn
trialsn!=n(n–1)(n–2)…..(2)(1)
BinomialProbabilityDistributionBinomialProbabilityFunctionBinomialProbabilityDistributionBinomialProbabilityFunctionProbabilityofaparticularsequenceoftrialoutcomeswithxsuccessesinntrialsNumberofexperimentaloutcomesprovidingexactlyxsuccessesinntrialsBinomialProbabilityDistributionExample:EvansElectronicsEvansElectronicsisconcernedaboutalowretentionrateforitsemployees.Inrecentyears,managementhasseenaturnoverof10%ofthehourlyemployeesannually.Choosing3hourlyemployeesatrandom,whatistheprobabilitythat1ofthemwillleavethecompanythisyear? Thus,foranyhourlyemployeechosenatrandom,managementestimatesaprobabilityof0.1thatthepersonwillnotbewiththecompanynextyear.BinomialProbabilityDistributionExample:EvansElectronicsTheprobabilityofthefirstemployeeleavingandthesecondandthirdemployeesstaying,denoted(S,F,F),isgivenby
p(1–p)(1–p)Witha.10probabilityofanemployeeleavingonanyonetrial,theprobabilityofanemployeeleavingonthefirsttrialandnotonthesecondandthirdtrialsisgivenby
(.10)(.90)(.90)=(.10)(.90)2=.081BinomialProbabilityDistributionExample:EvansElectronicsTwootherexperimentaloutcomesalsoresultinonesuccessandtwofailures.Theprobabilitiesforallthreeexperimentaloutcomesinvolvingonesuccessfollow.ExperimentalOutcome(S,F,F)(F,S,F)(F,F,S)ProbabilityofExperimentalOutcomep(1–p)(1–p)=(.1)(.9)(.9)=.081(1–p)p(1–p)=(.9)(.1)(.9)=.081(1–p)(1–p)p=(.9)(.9)(.1)=.081Total=.243BinomialProbabilityDistributionLet:p=.10,n=3,x=1Example:EvansElectronicsUsingtheprobabilityfunctionBinomialProbabilityDistribution
1stWorker2ndWorker3rdWorkerxProb.Leaves(.1)Stays(.9)32022Leaves(.1)Leaves(.1)S(.9)Stays(.9)Stays(.9)S(.9)S(.9)S(.9)L(.1)L(.1)L(.1)L(.1).0010.0090.0090.7290.009011.0810.0810.08101Example:EvansElectronicsUsingatreediagramBinomialProbabilitiesandCumulativeProbabilitiesWithmoderncalculatorsandthecapabilityofstatisticalsoftwarepackages,suchtablesarealmostunnecessary.Thesetablescanbefoundinsomestatisticstextbooks.Statisticianshavedevelopedtablesthatgiveprobabilitiesandcumulativeprobabilitiesforabinomialrandomvariable.BinomialProbabilityDistributionE(x)=
=npVar(x)=
2=np(1-
p)ExpectedValueVarianceStandardDeviationBinomialProbabilityDistributionE(x)=np
=3(.1)=.3employeesoutof3Var(x)=np(1–p)=3(.1)(.9)=.27ExpectedValueVarianceStandardDeviationExample:EvansElectronicsAPoissondistributedrandomvariableisoftenusefulinestimatingthenumberofoccurrencesoveraspecifiedintervaloftimeorspaceItisadiscreterandomvariablethatmayassumeaninfinitesequenceofvalues(x=0,1,2,...).PoissonProbabilityDistributionExamplesofaPoissondistributedrandomvariable:thenumberofknotholesin14linearfeetofpineboardthenumberofvehiclesarrivingatatollboothinonehourPoissonProbabilityDistributionBellLabsusedthePoissondistributiontomodelthearrivalofphonecalls.PoissonProbabilityDistributionTwoPropertiesofaPoissonExperimentTheoccurrenceornonoccurrenceinanyintervalisindependentoftheoccurrenceornonoccurrenceinanyotherinterval.Theprobabilityofanoccurrenceisthesameforanytwointervalsofequallength.PoissonProbabilityFunctionPoissonProbabilityDistributionwhere:
x=thenumberofoccurrencesinanintervalf(x)=theprobabilityofxoccurrencesinaninterval
=meannumberofoccurrencesinaninterval
e
=2.71828x!=x(x–1)(x–2)...(2)(1)PoissonProbabilityDistributionPoissonProbabilityFunctionInpracticalapplications,xwilleventuallybecomelargeenoughsothatf(x)isapproximatelyzeroandtheprobabilityofanylargervaluesofxbecomesnegligible.Sincethereisnostatedupperlimitforthenumberofoccurrences,theprobabilityfunctionf(x)isapplicableforvaluesx=0,1,2,…withoutlimit.PoissonProbabilityDistributionExample:MercyHospitalPatientsarriveattheemergencyroomofMercyHospitalattheaveragerateof6perhouronweekendevenings.Whatistheprobabilityof4arrivalsin30minutesonaweekendevening?PoissonProbabilityDistribution
=6/hour=3/half-hour,x=4Example:MercyHospitalUsingtheprobabilityfunctionPoissonProbabilityDistributionPoissonProbabilities0.000.050.100.150.200.25012345678910NumberofArrivalsin30MinutesProbabilityactually,thesequencecontinues:11,12,…Example:MercyHospitalPoissonProbabilityDistributionApropertyofthePoissondistributionisthatthemeanandvarianceareequal.
m=s2PoissonProbabilityDistributionVarianceforNumberofArrivals During30-MinutePeriods m=s
2=3Example:MercyHospitalHypergeometricProbabilityDistributionThehypergeometricdistributioniscloselyrelatedtothebinomialdistribution.However,forthehypergeometricdistribution:thetrialsarenotindependent,andtheprobabilityofsuccesschangesfromtrialtotrial.HypergeometricProbabilityFunctionHypergeometricProbabilityDistributionwhere:
x
=numberofsuccesses
n
=numberoftrialsf(x)=probabilityofxsuccessesinntrials
N=numberofelementsinthepopulation
r=numberofelementsinthepopulation labeledsuccessHypergeometricProbabilityFunctionHypergeometricProbabilityDistributionfor0<
x
<
rnumberofwaysxsuccessescanbeselectedfromatotalofrsuccessesinthepopulationnumberofwaysn–xfailurescanbeselectedfromatotalofN–rfailuresinthepopulationnumberofwaysnelementscanbeselectedfromapopulationofsizeNHypergeometricProbabilityDistributionHypergeometricProbabilityFunctionIfthesetwoconditionsdonotholdforavalueofx,thecorrespondingf(x)equals0.However,onlyvaluesofxwhere:1)x
<
rand2)n–x
<
N–rarevalid.Theprobabilityfunctionf(x)onthepreviousslideisusuallyapplicableforvaluesofx=0,1,2,…n.HypergeometricProbabilityDistributionBobNevereadyhasremovedtwodeadbatteriesfromaflashlightandinadvertentlymingledthemwiththetwogoodbatteriesheintendedasreplacem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年黔南贵定县“雁归兴贵•才聚麦溪”人才引进考试真题
- 2024年金华市警示教育基地管理中心选调笔试真题
- 天净沙·秋思课件
- 购销合作协议书合同模板
- 中山大学电子技术课件
- 美容店务合同协议书范本
- 上海沪牌租赁合同协议
- 中小学生云平台教学课件
- 中小学消防知识课件下载
- 2025商业地产租赁合同
- 西安高新区管委会招聘考试真题2024
- 党史知识竞赛试题及答案
- 宗教场所消防培训课件
- 隧道建设施工进度计划与工期保证措施
- 车工考评员培训课件
- 2025年老年人能力评估师(三级)考试模拟试题(含答案)
- 站姿走姿坐姿礼仪培训
- 小规模税务视频教学课件
- 业务外包费用管理制度
- 月子中心各部管理制度
- 痛风的康复护理课件
评论
0/150
提交评论