




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5
DiscreteProbabilityDistributions.10.20.30.400
1
234RandomVariablesDiscreteProbabilityDistributionsExpectedValueandVarianceBinomialProbabilityDistributionPoissonProbabilityDistributionHypergeometricProbabilityDistributionArandomvariableisanumericaldescriptionoftheoutcomeofanexperiment.RandomVariablesAdiscreterandomvariablemayassumeeitherafinitenumberofvaluesoraninfinitesequenceofvalues.Acontinuousrandomvariablemayassumeanynumericalvalueinanintervalorcollectionofintervals.Letx=numberofTVssoldatthestoreinoneday, wherexcantakeon5values(0,1,2,3,4)Example:JSLAppliancesDiscreteRandomVariablewithaFiniteNumberofValuesWecancounttheTVssold,andthereisafiniteupperlimitonthenumberthatmightbesold(whichisthenumberofTVsinstock).Letx=numberofcustomersarrivinginoneday, wherexcantakeonthevalues0,1,2,...DiscreteRandomVariablewithanInfiniteSequenceofValuesWecancountthecustomersarriving,butthereisnofiniteupperlimitonthenumberthatmightarrive.Example:JSLAppliancesRandomVariablesQuestionRandomVariablexTypeFamilysizex=NumberofdependentsreportedontaxreturnDiscreteDistancefromhometostorex=DistanceinmilesfromhometothestoresiteContinuousOwndogorcatx=1ifownnopet;=2ifowndog(s)only;=3ifowncat(s)only;=4ifowndog(s)andcat(s)DiscreteTheprobabilitydistributionforarandomvariabledescribeshowprobabilitiesaredistributedoverthevaluesoftherandomvariable.Wecandescribeadiscreteprobabilitydistributionwithatable,graph,orformula.DiscreteProbabilityDistributionsTheprobabilitydistributionisdefinedbya
probabilityfunction,denotedbyf(x),whichprovidestheprobabilityforeachvalueoftherandomvariable.Therequiredconditionsforadiscreteprobabilityfunctionare:DiscreteProbabilityDistributionsf(x)>0
f(x)=1atabularrepresentationoftheprobabilitydistributionforTVsaleswasdeveloped.UsingpastdataonTVsales,… Number
UnitsSold
ofDays 0 80 1 50 2 40 3 10 4 20 200
x
f(x)0 .401 .252 .203 .054 .101.0080/200DiscreteProbabilityDistributionsExample:JSLAppliances.10.20.30.40.500
12
3
4ValuesofRandomVariablex(TVsales)ProbabilityDiscreteProbabilityDistributionsExample:JSLAppliancesGraphicalrepresentationofprobabilitydistributionDiscreteUniformProbabilityDistributionThediscreteuniformprobabilitydistributionisthesimplestexampleofadiscreteprobabilitydistributiongivenbyaformula.Thediscreteuniformprobabilityfunctionisf(x)=1/nwhere:
n=thenumberofvaluestherandom variablemayassumethevaluesoftherandomvariableareequallylikelyExpectedValueTheexpectedvalue,ormean,ofarandomvariableisameasureofitscentrallocation.Theexpectedvalueisaweightedaverageofthevaluestherandomvariablemayassume.Theweightsaretheprobabilities.Theexpectedvaluedoesnothavetobeavaluetherandomvariablecanassume.E(x)=
=
xf(x)VarianceandStandardDeviationThevariancesummarizesthevariabilityinthevaluesofarandomvariable.Thevarianceisaweightedaverageofthesquareddeviationsofarandomvariablefromitsmean.Theweightsaretheprobabilities.Var(x)=
2=
(x-
)2f(x)Thestandarddeviation,
,isdefinedasthepositivesquarerootofthevariance.expectednumberofTVssoldinaday
x
f(x)
xf(x)0 .40 .001 .25 .252 .20 .403 .05 .154 .10 .40
E(x)=1.20ExpectedValueExample:JSLAppliances01234-1.2-0.20.81.82.81.440.040.643.247.84.40.25.20.05.10.576.010.128.162.784x-
(x-
)2f(x)(x-
)2f(x)Varianceofdailysales=s2=1.660xTVssquaredStandarddeviationofdailysales=1.2884TVsVarianceExample:JSLAppliancesBinomialProbabilityDistributionFourPropertiesofaBinomialExperiment3.Theprobabilityofasuccess,denotedbyp,doesnotchangefromtrialtotrial.4.Thetrialsareindependent.2.Twooutcomes,successandfailure,arepossibleoneachtrial.1.Theexperimentconsistsofasequenceofnidenticaltrials.stationarityassumptionBinomialProbabilityDistributionOurinterestisinthenumberofsuccessesoccurringinthentrials.Weletxdenotethenumberofsuccessesoccurringinthentrials.where:
x=thenumberofsuccessesp=theprobabilityofasuccessononetrialn=thenumberoftrials
f(x)=theprobabilityofxsuccessesinn
trialsn!=n(n–1)(n–2)…..(2)(1)
BinomialProbabilityDistributionBinomialProbabilityFunctionBinomialProbabilityDistributionBinomialProbabilityFunctionProbabilityofaparticularsequenceoftrialoutcomeswithxsuccessesinntrialsNumberofexperimentaloutcomesprovidingexactlyxsuccessesinntrialsBinomialProbabilityDistributionExample:EvansElectronicsEvansElectronicsisconcernedaboutalowretentionrateforitsemployees.Inrecentyears,managementhasseenaturnoverof10%ofthehourlyemployeesannually.Choosing3hourlyemployeesatrandom,whatistheprobabilitythat1ofthemwillleavethecompanythisyear? Thus,foranyhourlyemployeechosenatrandom,managementestimatesaprobabilityof0.1thatthepersonwillnotbewiththecompanynextyear.BinomialProbabilityDistributionExample:EvansElectronicsTheprobabilityofthefirstemployeeleavingandthesecondandthirdemployeesstaying,denoted(S,F,F),isgivenby
p(1–p)(1–p)Witha.10probabilityofanemployeeleavingonanyonetrial,theprobabilityofanemployeeleavingonthefirsttrialandnotonthesecondandthirdtrialsisgivenby
(.10)(.90)(.90)=(.10)(.90)2=.081BinomialProbabilityDistributionExample:EvansElectronicsTwootherexperimentaloutcomesalsoresultinonesuccessandtwofailures.Theprobabilitiesforallthreeexperimentaloutcomesinvolvingonesuccessfollow.ExperimentalOutcome(S,F,F)(F,S,F)(F,F,S)ProbabilityofExperimentalOutcomep(1–p)(1–p)=(.1)(.9)(.9)=.081(1–p)p(1–p)=(.9)(.1)(.9)=.081(1–p)(1–p)p=(.9)(.9)(.1)=.081Total=.243BinomialProbabilityDistributionLet:p=.10,n=3,x=1Example:EvansElectronicsUsingtheprobabilityfunctionBinomialProbabilityDistribution
1stWorker2ndWorker3rdWorkerxProb.Leaves(.1)Stays(.9)32022Leaves(.1)Leaves(.1)S(.9)Stays(.9)Stays(.9)S(.9)S(.9)S(.9)L(.1)L(.1)L(.1)L(.1).0010.0090.0090.7290.009011.0810.0810.08101Example:EvansElectronicsUsingatreediagramBinomialProbabilitiesandCumulativeProbabilitiesWithmoderncalculatorsandthecapabilityofstatisticalsoftwarepackages,suchtablesarealmostunnecessary.Thesetablescanbefoundinsomestatisticstextbooks.Statisticianshavedevelopedtablesthatgiveprobabilitiesandcumulativeprobabilitiesforabinomialrandomvariable.BinomialProbabilityDistributionE(x)=
=npVar(x)=
2=np(1-
p)ExpectedValueVarianceStandardDeviationBinomialProbabilityDistributionE(x)=np
=3(.1)=.3employeesoutof3Var(x)=np(1–p)=3(.1)(.9)=.27ExpectedValueVarianceStandardDeviationExample:EvansElectronicsAPoissondistributedrandomvariableisoftenusefulinestimatingthenumberofoccurrencesoveraspecifiedintervaloftimeorspaceItisadiscreterandomvariablethatmayassumeaninfinitesequenceofvalues(x=0,1,2,...).PoissonProbabilityDistributionExamplesofaPoissondistributedrandomvariable:thenumberofknotholesin14linearfeetofpineboardthenumberofvehiclesarrivingatatollboothinonehourPoissonProbabilityDistributionBellLabsusedthePoissondistributiontomodelthearrivalofphonecalls.PoissonProbabilityDistributionTwoPropertiesofaPoissonExperimentTheoccurrenceornonoccurrenceinanyintervalisindependentoftheoccurrenceornonoccurrenceinanyotherinterval.Theprobabilityofanoccurrenceisthesameforanytwointervalsofequallength.PoissonProbabilityFunctionPoissonProbabilityDistributionwhere:
x=thenumberofoccurrencesinanintervalf(x)=theprobabilityofxoccurrencesinaninterval
=meannumberofoccurrencesinaninterval
e
=2.71828x!=x(x–1)(x–2)...(2)(1)PoissonProbabilityDistributionPoissonProbabilityFunctionInpracticalapplications,xwilleventuallybecomelargeenoughsothatf(x)isapproximatelyzeroandtheprobabilityofanylargervaluesofxbecomesnegligible.Sincethereisnostatedupperlimitforthenumberofoccurrences,theprobabilityfunctionf(x)isapplicableforvaluesx=0,1,2,…withoutlimit.PoissonProbabilityDistributionExample:MercyHospitalPatientsarriveattheemergencyroomofMercyHospitalattheaveragerateof6perhouronweekendevenings.Whatistheprobabilityof4arrivalsin30minutesonaweekendevening?PoissonProbabilityDistribution
=6/hour=3/half-hour,x=4Example:MercyHospitalUsingtheprobabilityfunctionPoissonProbabilityDistributionPoissonProbabilities0.000.050.100.150.200.25012345678910NumberofArrivalsin30MinutesProbabilityactually,thesequencecontinues:11,12,…Example:MercyHospitalPoissonProbabilityDistributionApropertyofthePoissondistributionisthatthemeanandvarianceareequal.
m=s2PoissonProbabilityDistributionVarianceforNumberofArrivals During30-MinutePeriods m=s
2=3Example:MercyHospitalHypergeometricProbabilityDistributionThehypergeometricdistributioniscloselyrelatedtothebinomialdistribution.However,forthehypergeometricdistribution:thetrialsarenotindependent,andtheprobabilityofsuccesschangesfromtrialtotrial.HypergeometricProbabilityFunctionHypergeometricProbabilityDistributionwhere:
x
=numberofsuccesses
n
=numberoftrialsf(x)=probabilityofxsuccessesinntrials
N=numberofelementsinthepopulation
r=numberofelementsinthepopulation labeledsuccessHypergeometricProbabilityFunctionHypergeometricProbabilityDistributionfor0<
x
<
rnumberofwaysxsuccessescanbeselectedfromatotalofrsuccessesinthepopulationnumberofwaysn–xfailurescanbeselectedfromatotalofN–rfailuresinthepopulationnumberofwaysnelementscanbeselectedfromapopulationofsizeNHypergeometricProbabilityDistributionHypergeometricProbabilityFunctionIfthesetwoconditionsdonotholdforavalueofx,thecorrespondingf(x)equals0.However,onlyvaluesofxwhere:1)x
<
rand2)n–x
<
N–rarevalid.Theprobabilityfunctionf(x)onthepreviousslideisusuallyapplicableforvaluesofx=0,1,2,…n.HypergeometricProbabilityDistributionBobNevereadyhasremovedtwodeadbatteriesfromaflashlightandinadvertentlymingledthemwiththetwogoodbatteriesheintendedasreplacem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全球半导体分立器件市场概况
- 浓香型白酒的品牌定位策略
- 地铁安全保卫部门职责
- 发电机项目商业计划书
- 储能机项目建议书(模板范文)
- 2025年不见面审批项目建议书
- 2025年工程和技术研究与试验发展服务合作协议书
- 中国人民大学商学院招聘真题2024
- 乐山市精神卫生中心招聘考试真题2024
- 河北唐山工业职业技术大学选聘考试真题2024
- 2025年陕西延长石油有限责任公司招聘笔试参考题库含答案解析
- 《淞沪会战》课件
- Excel办公技巧培训
- 新时代大学生劳动教育 课件 第5章 劳动素养及其养成
- 2024年度英语课件容貌焦虑
- 初一家长会课件96108
- 《企业文化概述》课件
- 廉政教育培训
- 村庄破损道路修缮方案
- 2024年广东省深圳市中考英语试题含解析
- 高中生升学就业指导模板
评论
0/150
提交评论