




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省汉中市洋县城关中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.与是定义在上的两个可导函数,若,满足,则与满足
A.
B.为常数函数
C.
D.为常数函数参考答案:B2.双曲线2x2﹣y2=8的实轴长是(
)A.2 B. C.4 D.参考答案:C【考点】双曲线的标准方程.【专题】计算题.【分析】将双曲线方程化为标准方程,求出实轴长.【解答】解:2x2﹣y2=8即为∴a2=4∴a=2故实轴长为4故选C【点评】本题考查双曲线的标准方程、由方程求参数值.3.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=().A.-e
B.-1
C.1
D.e参考答案:B4.已知样本:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的范围是(
)A.5.5~7.5
B.7.5~9.5
C.9.5~11.5
D.11.5~13.5参考答案:D5.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是(
)(A)1024种
(B)1023种
(C)1536种
(D)1535种
参考答案:解析:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有种.6.国庆节放假,甲、乙、丙去北京旅游的概率分别是,,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为()A.
B.
C.
D.参考答案:B7.在下列各数中,最大的数是(
)A.
B.C、
D.参考答案:B8.复数的模是()A. B. C. D.参考答案:D【分析】先将复数化成形式,再求模。【详解】所以模是故选D.【点睛】本题考查复数的计算,解题的关键是将复数化成形式,属于简单题。8.函数的图象与直线相切,则
A.
B.
C.
D.
1参考答案:B略10.入射光线线在直线:上,经过轴反射到直线上,再经过轴反射到直线上,则直线的方程为()A.
B.C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若数列中,则。参考答案:略12.甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,给该机打进的电话是打给甲、乙、丙的概率分别是,在一段时间内该电话机共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是
(用分数作答)参考答案:13.空间中点A(2,3,5)与B(3,1,4),则|AB|=.参考答案:【考点】空间两点间的距离公式.【分析】直接利用空间两点间的距离公式求解即可.【解答】解:∵A(2,3,5),B(3,1,4),∴|AB|==,故答案为.【点评】本题考查空间两点间的距离公式的运用,考查学生的计算能力,比较基础.14.已知P为抛物线x2=4y上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|PA|+|PM|的最小值为.参考答案:﹣1【考点】抛物线的简单性质.【分析】先根据抛物线方程求得焦点和准线方程,可把问题转化为P到准线与P到A点距离之和最小,进而根据抛物线的定义可知抛物线中P到准线的距离等于P到焦点的距离,进而推断出P、A、F三点共线时|PF|+|PA|距离之和最小,利用两点间距离公式求得|FA|,则|PA|+|PM|可求.【解答】解:依题意可知,抛物线x2=4y的焦点F为(0,1),准线方程为y=﹣1,只需直接考虑P到准线与P到A点距离之和最小即可,(因为x轴与准线间距离为定值1不会影响讨论结果),由于在抛物线中P到准线的距离等于P到焦点F的距离,此时问题进一步转化为|PF|+|PA|距离之和最小即可,显然当P、A、F三点共线时|PF|+|PA|距离之和最小,为|FA|,由两点间距离公式得|FA|==,那么P到A的距离与P到x轴距离之和的最小值为|FA|﹣1=﹣1.故答案为:﹣1.15.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为
。参考答案:略16.(5分)已知定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且f(1)=0,则不等式f(2x﹣1)>0的解集为.参考答案:因为f(x)在(0,+∞)上单调递增且为奇函数,所以f(x)在(﹣∞,0)上也单调递增,f(﹣1)=﹣f(1)=0,作出草图如下所示:由图象知,f(2x﹣1)>0等价于﹣1<2x﹣1<0或2x﹣1>1,解得0<x<或x>1,所以不等式的解集为(0,)∪(1,+∞),故答案为:(0,)∪(1,+∞).根据函数的奇偶性、单调性可作出函数的草图及函数所的零点,根据图象可对不等式等价转化为具体不等式,解出即可.17.已知6,a,b,48成等差数列,6,c,d,48成等比数列,则a+b+c+d的值为.参考答案:90【考点】等比数列的性质;等差数列的性质.【分析】根据6,a,b,48成等差数列,可得a+b=6+48,根据6,c,d,48成等比数列,可得48=6q3,故公比q=2,求出c和d的值,即得a+b+c+d的值.【解答】解:根据6,a,b,48成等差数列,可得a+b=6+48=54,根据6,c,d,48成等比数列,可得48=6q3,故公比q=2,故c+d=12+24=36,∴a+b+c+d=54+36=90,故答案为90.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知在等差数列{an}中,a1=﹣1,a3=3.(1)求an;(2)令bn=2an,判断数列{bn}是等差数列还是等比数列,并说明理由.参考答案:【分析】(1)利用等差数列的通项公式即可得出;(2)利用等比数列的通项公式及其定义即可判断出结论.【解答】解:(1)设数列{an}的公差是d,则,故an=﹣1+2(n﹣1)=2n﹣3.(2)由(1)可得,∴是一常数,故数列{bn}是等比数列.【点评】本题考查了等差数列与等比数列的定义及其通项公式,考查了推理能力与计算能力,属于中档题.19.(本小题满分12分)已知函数.(Ⅰ)若无极值点,但其导函数有零点,求的值;(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于.参考答案:由韦达定理,,令其中设,利用导数容易证明当时单调递减,而,因此,即的极小值
-------12分(Ⅱ)另证:实际上,我们可以用反代的方式证明的极值均小于.由于两个极值点是方程的两个正根,所以反过来,(用表示的关系式与此相同),这样即,再证明该式小于是容易的(注意,下略).20.已知正项数列{an}满足,前n项和Sn满足,(Ⅰ)求的值;(Ⅱ)猜测数列{an}的通项公式,并用数学归纳法证明.参考答案:(Ⅰ);(Ⅱ)见解析【分析】(I)先求得值,然后求得的值,进而求得的值.(II)先猜想出数列的通项公式.然后证明当,的通项公式符合,假设当时结论成立,证得当时结论成立,由此得到数列的通项公式.【详解】(Ⅰ)当时,,解得当时,,当时,,.(Ⅱ)猜想得下面用数学归纳法证明:①时,满足.②假设时,结论成立,即,则时,
将代入化简得,
故时结论成立.综合①②可知,.【点睛】本小题主要考查求数列的前几项,考查利用数学归纳法求数列的通项公式,属于中档题.21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为:.(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?参考答案:(1)时,最大车流量为千辆/小时;(2)汽车的平均速度应在25km/h到64km/h之间.22.如图,多面体ABCDE中,,,,平面BCDE⊥平面ABC,M为BC的中点.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人机物流配送在2025年无人机物流配送技术创新与专利分析报告
- 2025年智慧城市智能建筑系统集成创新应用效果深度报告
- 有效利用资源的成本控制方法
- 2025年教育精准扶贫项目实施对农村学校学生学业发展的评估
- 2023年监理工程师之合同管理通关试题库(有答案)
- 2023年版高中物理知识点总结
- 2023年电大职业技能考核绩效与薪酬实务
- 2023甘肃省安全员《B证》考试题库及答案
- 2025版轨道交钢板租赁合同范本
- 二零二五年度苗木种植与生态园林景观规划设计施工一体化劳务分包合同
- 银行背债协议书
- 食品微生物样品采集规范
- 【课件】有理数的加法法则 课件华东师大版数学七年级上册
- 慢阻肺护理新进展
- 受伤赔偿协议书范本
- 设计变更流程讲解
- 2025年青年发展类面试题及答案
- 2024-2025学年广东省佛山市南海区七年级(上)期末语文试卷(含答案解析)
- 老年病人的心理特点与心理护理措施
- 智慧交通基础知识单选题100道及答案解析
- 高速公路收费站大棚工程施工组织设计方案
评论
0/150
提交评论