




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市昌平二中学南校区数学九年级第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点2.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.123.将抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2 C.y=3(x+3)2﹣3 D.y=3x2﹣64.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50° B.60° C.65° D.75°5.设,则代数式的值为()A.-6 B.-5 C. D.6.在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A.2000000cm B.2000m C.200km D.2000km7.下列关于x的一元二次方程没有实数根的是()A. B. C. D.8.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若是抛物线上两点,则,其中说法正确的是(
)A.①② B.②③ C.①②④ D.②③④9.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为()A. B. C. D.10.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是()A.两根都垂直于地面 B.两根平行斜插在地上 C.两根不平行 D.两根平行倒在地上11.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)12.对于抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标二、填空题(每题4分,共24分)13.如图,在中,,,点为边上一点,作于点,若,,则的值为____.14.已知点与点,两点都在反比例函数的图象上,且<<,那么______________.(填“>”,“=”,“<”)15.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.16.一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.17.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=kx(x<0)的图象经过点A,若S△AOB=3,则k的值为________18.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.三、解答题(共78分)19.(8分)如图,已知线段与点,若在线段上存在点,满足,则称点为线段的“限距点”.(1)如图,在平面直角坐标系中,若点.①在中,是线段的“限距点”的是;②点是直线上一点,若点是线段的“限距点”,请求出点横坐标的取值范围.(2)在平面直角坐标系中,点,直线与轴交于点,与轴交于点.若线段上存在线段的“限距点”,请求出的取值范围.20.(8分)举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.(10分)空间任意选定一点,以点为端点作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,轴方向表示的量称为几何体码放的层数;如图是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作(1,2,6),如图的几何体码放了排列层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组(3,2,4)所对应的码放的几何体是_____;(2)图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(___,____,____),组成这个几何体的单位长方体的个数为____个;(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用表示)(4)当时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(___,___,___),此时求出的这个几何体表面积的大小为________.(缝隙不计)23.(10分)已知二次函数y=ax²+bx-4(a,b是常数.且a0)的图象过点(3,-1).(1)试判断点(2,2-2a)是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.(3)已知二次函数的图像过(,)和(,)两点,且当<时,始终都有>,求a的取值范围.24.(10分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.25.(12分)如图,P是平面直角坐标系中第四象限内一点,过点P作PA⊥x轴于点A,以AP为斜边在右侧作等腰Rt△APQ,已知直角顶点Q的纵坐标为﹣2,连结OQ交AP于B,BQ=2OB.(1)求点P的坐标;(2)连结OP,求△OPQ的面积与△OAQ的面积之比.26.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据二次函数的性质解题.【题目详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.
B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.
C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.
D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.
故选:D.【题目点拨】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.2、C【解题分析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【题目详解】如图连接AC,,,,菱形ABCD的周长,故选C.【题目点拨】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.3、A【解题分析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【题目详解】抛物线向右平移3个单位,得到的抛物线的解析式是故选A.【题目点拨】本题主要考查二次函数的图象平移规律:左加右减,上加下减.4、C【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根据三角形外角性质计算∠PCA的度数.【题目详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【题目点拨】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.5、A【分析】把a2+2a-12变形为a2+2a+1-13,根据完全平方公式得出(a+1)2-13,代入求出即可.【题目详解】∵,∴=a2+2a+1-13=(a+1)2-13=(-1+1)2-13=7-13=-6.故选A.【题目点拨】本题考查了二次根式的化简,完全平方公式的运用,主要考查学生的计算能力.题目比较好,难度不大.6、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【题目详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【题目点拨】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.7、D【解题分析】利用一元二次方程的根的判别式逐项判断即可.【题目详解】一元二次方程的根的判别式为,逐项判断如下:A、,方程有两个不相等的实数根,不符题意B、,方程有两个相等的实数根,符合题意C、,方程有两个不相等的实数根,不符题意D、,方程没有实数根,符合题意故选:D.【题目点拨】本题考查了一元二次方程的根的判别式,对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.8、A【分析】根据二次函数的图像和性质逐个分析即可.【题目详解】解:对于①:∵抛物线开口向上,∴a>0,∵对称轴,即,说明分子分母a,b同号,故b>0,∵抛物线与y轴相交,∴c<0,故,故①正确;对于②:对称轴,∴,故②正确;对于③:抛物线与x轴的一个交点为(-3,0),其对称轴为直线x=-1,根据抛物线的对称性可知,抛物线与x轴的另一个交点为,1,0),故当自变量x=2时,对应的函数值y=,故③错误;对于④:∵x=-5时离对称轴x=-1有4个单位长度,x=时离对称轴x=-1有个单位长度,由于<4,且开口向上,故有,故④错误,故选:A.【题目点拨】本题考查了二次函数的图像与其系数的符号之间的关系,熟练掌握二次函数的图形性质是解决此类题的关键.9、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到Rt△ADE≌Rt△ACB,于是.【题目详解】∵∠ACB=90°,AC=BC=1,
∴,
∴,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,∴.
故选:A【题目点拨】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10、C【分析】在不同时刻,同一物体的影子方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在变,依此进行分析.【题目详解】在同一时刻,两根竿子置于阳光下,但看到他们的影长相等,那么这两根竿子的顶部到地面的垂直距离相等,而竿子长度不等,故两根竿子不平行,故答案选择C.【题目点拨】本题考查投影的相关知识,解决此题的关键是掌握平行投影的特点.11、B【解题分析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.12、A【题目详解】∵抛物线∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.二、填空题(每题4分,共24分)13、【分析】作辅助线证明四边形DFCE是矩形,得DF=CE,根据角平分线证明∠ACD=∠CDE即可解题.【题目详解】解:过点D作DF⊥AC于F,∵,∴DF=3,∵,∴四边形DFCE是矩形,CE=DF=3,在Rt△DEC中,tan∠CDE==,∵∠ACD=∠CDE,∴=.【题目点拨】本题考查了三角函数的正切值求值,矩形的性质,中等难度,根据角平分线证明∠ACD=∠CDE是解题关键.14、<【分析】根据反比例函数图象增减性解答即可.【题目详解】∵反比例函数的图象在每一个象限内y随x的增大而增大∴图象上点与点,且0<<∴<故本题答案为:<.【题目点拨】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键.15、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【题目详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【题目点拨】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.16、.【解题分析】试题分析:如图所示,∵共有4种结果,两次摸出小球的数字和为偶数的有2次,∴两次摸出小球的数字和为偶数的概率==.故答案为.考点:列表法与树状图法.17、-33【解题分析】如图所示,过点A作AD⊥OD,根据∠AOB=30°,AB=BO,可得∠DAB=60°,∠OAB=30°,所以∠BAD=30°,在Rt△ADB中,sin∠BAD=BDAB,即sin30°=BDAB=12,因为AB=BO,所以BDBO=12,所以S△ADBS△ABO=118、或或或【分析】根据圆与直线的位置关系可知,当⊙与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【题目详解】∵⊙的半径为1,∴当⊙与轴相切时,P点的纵坐标为1或-1.当时,,解得,∴此时P的坐标为或;当时,,解得,∴此时P的坐标为或;故答案为:或或或.【题目点拨】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键.三、解答题(共78分)19、(1)①;②或;(2).【分析】(1)①已知AB=2,根据勾股定理,结合两点之间的距离公式,即可得到答案;②根据题意,作出“限距点”的轨迹,结合图形,即可得到答案;(2)结合(1)的轨迹,作出图像,可分为两种情况进行分析,分别求出两个临界点,即可求出t的取值范围.【题目详解】(1)①根据题意,如图:∵点,∴AB=2,∵点C为(0,2),点O(0,0)在AB上,∴OC=AB=2;∵E为,点O(0,0)在AB上,∴OE=;∵点D()到点A的距离最短,为;∴线段的“限距点”的是点C、E;故答案为:C、E.②由题意直线上满足线段的“限距点”的范围,如图所示.∴点在线段AN和DM两条线段上(包括端点),∵AM=AB=2,设点M的坐标为:(n,n)(n<0),∵,∴,∴,易知,同理点横坐标的取值范围为:或.(2)∵与x轴交于点M,与y轴交于点N,∴令y=0,得;令x=0,得,∴点M为:(),点N为:(0,);如图所示,此时点M到线段AB的距离为2,∴,∴;如图所示,AE=AB=2,∵∠EMG=∠EAF=30°,∴,∵,∴,,∴,∵,AG=1,∴解得:;综上所述:的取值范围为:.【题目点拨】本题考查了解直角三角形的应用,利用勾股定理解直角三角形,一次函数的图像与性质,一次函数的动点问题,以及新定义的理解,解题的关键是正确作出辅助图形,利用数形结合的思想,以及临界点的思想进行解题,本题难度较大,分析题意一定要仔细.20、(1);(2).【解题分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【题目详解】解答:(1)一辆车经过收费站时,选择A通道通过的概率是,故答案为.(2)列表如下:ABCDAAAABACADBBABBBCBDCCACBCCCDDDADBDCDD由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为=.【题目点拨】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21、(1)(2),,144元【分析】(1)利用待定系数法求解可得关于的函数解析式;(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【题目详解】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【题目点拨】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.22、(1)B;(2);;;;(3);(4);;;.【分析】(1)根据有序数组中x、y和z表示的实际意义即可得出结论;(2)根据三视图的定义和有序数组中x、y和z表示的实际意义即可得出结论;(3)根据题意,分别从不同方向找出面积为、和的长方形,用含x、y、z的式子表示出它们的个数,然后根据表面积公式计算即可;(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3,然后分类讨论,根据(3)的公式分别求出在每一种情况下的最小值,最后通过比较找出最小的即可得出结论.【题目详解】解:(1)有序数组(3,2,4)表示3排2列4层,故B选项符合故选:B.(2)由左视图和俯视图可知:该几何体共码放了2排,由主视图和俯视图可知:该几何体共码放了3列,由主视图和左视图可知:该几何体共码放了2层,故这种码放方式的有序数组为(,,);组成这个几何体的单位长方体的个数为2×3×2=;故答案为:;;;;(3)根据题意可知:从几何体的前面和后面看:面积为的长方形共有2yz个,从几何体的左面和右面看:面积为的长方形共有2xz个,从几何体的上面和下面看:面积为的长方形共有2xy个,∴几何体表面积(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3①当xyz=1×1×12时∵根据(3)中公式可知,此时当x=1,y=1,z=12时,几何体表面积最小此时;②当xyz=1×2×6时∵根据(3)中公式可知,此时当x=1,y=2,z=6时,几何体表面积最小此时;③当xyz=1×3×4时∵根据(3)中公式可知,此时当x=1,y=3,z=4时,几何体表面积最小此时;④当xyz=2×2×3时∵根据(3)中公式可知,此时当x=2,y=2,z=3时,几何体表面积最小此时;∵∴这个有序数组为(,,),最小面积为.故答案为:;;;1.【题目点拨】此题考查的是新定义类问题,读懂材料、并归纳总结公式和掌握三视图的概念和表面积的求法和分类讨论的数学思想是解决此题的关键.23、(1)不在;(2);;(3)【解题分析】(1)将点代入函数解析式,求出a和b的等式,将函数解析式改写成只含有a的形式,再将点代入验证即可;(2)令,得到一个一元二次方程,由题意此方程只有一个实数根,由根的判别式即可求出a的值,从而可得函数表达式;(3)根据函数解析式求出其对称轴,再根据函数图象的增减性判断即可.【题目详解】(1)二次函数图像过点代入得,,代入得将代入得,得,不成立,所以点不在该函数图像上;(2)由(1)知,与x轴只有一个交点只有一个实数根,或当时,,所以表达式为:当时,,所以表达式为:;(3)对称轴为当时,函数图象如下:若要满足时,恒大于,则、均在对称轴左侧,当时,函数图象如下:,此时,必小于综上,所求的a的取值范围是:.【题目点拨】本题考查了二次函数图象的性质(与x的交点问题、对称轴、增减性),熟记性质是解题关键.24、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【题目详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,,∴当时,的面积有最大值,最大值是,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国泳帽行业市场深度调研及竞争格局与投资研究报告
- 2025-2030年中国汽车燃油喷射器行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国水产渔业机械行业发展趋势与前景展望战略研究报告
- 流通数字化对居民消费升级的促进作用研究
- 构建碳排放双控体系的路径与策略
- 血透患者低血压的护理讲课件
- 护理技能课件制作
- 石膏固定的健康教育讲课件
- 2025年中国绝热隔音材料行业市场调查研究及投资战略研究报告
- 护理技术课程课件
- 铁路隧道掘进机法技术规程
- GB/T 30685-2024气瓶直立道路运输技术要求
- DLT 5434-2021 电力建设工程监理规范表格
- 【深信服】PT1-AF认证考试复习题库(含答案)
- 屋顶光伏劳务合同范本
- 广东省广州市越秀区执信中学2025届高一下数学期末教学质量检测模拟试题含解析
- 《灰尘的旅行》阅读测试题附答案
- 西南联大与现代中国智慧树知到期末考试答案章节答案2024年云南师范大学
- MOOC 心理学与生活-南京大学 中国大学慕课答案
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- 夜市应急方案及措施
评论
0/150
提交评论