版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-PAGE6-2014学年嘉定区九年级第一次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每小题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】Oxy图11.对于抛物线,下列说法正确的是(Oxy图1(A)顶点坐标是;(B)顶点坐标是;(C)顶点坐标是;(D)顶点坐标是.2.已知二次函数的图像如图1所示,那么、的符号为(▲)(A),;(B),;(C),;(D),.3.在△中,,、、分别是、、的对边,下列等式中正确的是(▲)ABCDO图2(A);(B);(C);(D)ABCDO图24.如图2,已知∥,与相交于点,,那么下列式子正确的是(▲)(A);(B);(C);(D).5.已知非零向量、和,下列条件中,不能判定∥的是(▲)(A)=;(B),;(C),;(D).6.在△中,,,.以点为圆心,半径为的圆记作圆,以点为圆心,半径为的圆记作圆,则圆与圆的位置关系是(▲)(A)外离;(B)外切;(C)相交;(D)内切.二、填空题:(本大题共12题,每小题4分,满分48分)7.如果函数是二次函数,那么的取值范围是▲.8.在平面直角坐标系中,如果把抛物线向上平移2个单位,那么所得抛物线的表达式为▲.9.已知抛物线的对称轴为,如果点与点关于这条对称轴对称,那么点的坐标是▲.10.请写出一个经过点,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是▲.11.已知线段是线段、的比例中项,且,,那么▲.ABCDFE图312.如果ABCDFE图313.如图3,已知在平行四边形中,点在边上,射线交的延长线于点,,,那么的长为▲.14.在△中,,,,那么▲.图415.小杰在楼上点处看到楼下点处的小丽的俯角是,那么点处的小丽看点处的小杰的仰角是▲度.图416.正九边形的中心角等于▲度.17.如图4,、都是圆的弦,,,ABCD图5垂足分别为点、,如果,那么▲.ABCD图518.在△中,,,是的平分线交于点(如图5),△沿直线翻折后,点落到点处,如果,那么▲.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知在△中,,,点是边上的一个动点,,∥,联结.(1)如图10,如果∥,求的长;(2)如图11,如果直线与边的延长线交于点,设,,求关于的函数解析式,并写出它的定义域;(3)如图12,如果直线与边的反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绿化工程合同:某物业管理公司与绿化公司的合作
- 二零二四年房产众筹投资合同
- 餐厨设备采购合同
- 混凝土砌块采购合同
- 二零二四年度房地产活动信息技术支持合同3篇
- 2024年度企业员工工作服定制合同2篇
- 2024年度版权许可合同:某音乐制作人与歌手之间的版权许可协议
- 停车场道闸系统安装合同
- 2024年度物联网技术研究与应用服务合同2篇
- 2024年度新能源汽车充电设施防雷设计与施工合同2篇
- 商鼎7使用手册本手册是7百货购物中心管理系统的配套以浅显易懂文字和图
- 小学六年级学生基本音乐能力测评分析报告,音乐论文
- ISO13485-2016医疗器械质量管理体系内审及管理评审资料
- 2021年全年(压力性损伤)压疮数据统计分析
- 动漫影视作品赏析课件第八章 僵尸新娘
- 2023国家工作人员学法用法考试题库及答案
- 小学数学讲题比赛主持词
- 五年级美术上册第10课指墨画课件2浙美版
- 全国地理优质课一等奖《太阳和月球之月球》
- 重症慢性病认定申请表
- 圆周运动的临界问题-课件
评论
0/150
提交评论