版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省合肥市中铁四局集团铁路中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知f(x)=alnx+x2(a>0).若对任意两个不等的正实数x1,x2都有>2恒成立,则a的取值范围是
().A.(0,1]
B.(1,+∞)C.(0,1)
D.[1,+∞)参考答案:D由k=知,f′(x)=+x≥2,x∈(0,+∞)恒成立,即a≥x(2-x)恒成立.∵x(2-x)的最大值为1,∴a≥1.
2.已知点A(-4,8,6),则点A关于y轴对称的点的坐标是(
)A.(4,8,-6)
B.(-4,-8,-6)C.(-6,-8,4)
D.(-4,-8,6)参考答案:A3.命题“?x∈R,都有x2≥0”的否定为()A.不存在x0∈R,使得<0 B.?x∈R,都有x2<0C.?x0∈R,使得≥0 D.?x0∈R,使得<0 参考答案:D【考点】命题的否定.【分析】直接由特称命题与全称命题的否定关系得答案.【解答】解:命题“?x∈R,都有x2≥0”为全程命题,其否定为特称命题“?x0∈R,使得”.故选:D.4.设是等腰三角形,,则以为焦点且过点的双曲线的离心率为(
)A.
B.
C.
D.参考答案:B5.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有(
)A.240
B.480
C.720
D.960参考答案:B6.如图,空间四边形OABC中,,点M在上,且OM=2MA,点N为BC中点,则=()A. B. C. D.参考答案:B【考点】向量加减混合运算及其几何意义.【分析】由题意,把,,三个向量看作是基向量,由图形根据向量的线性运算,将用三个基向量表示出来,即可得到答案,选出正确选项.【解答】解:由题意=++=+﹣+=﹣++﹣=﹣++又=,=,=∴=﹣++故选B.【点评】本题考点是空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.7.函数的部分图像大致为(
)A. B. C. D.参考答案:A【分析】由函数的表达式确定函数的性质,运用导数求出极值,从而利用数形结合确定函数的图象的形状.【详解】解:,函数是偶函数,的图象关于y轴对称,故排除B,又,故排除D.在时取最小值,即时取最小值,解得x=,此时故排除C.故选:A.8.已知函数是在定义域上的偶函数,且在区间[0,+∞)单调递增,若实数满足,则的取值范围是(
)A.(-∞,2]
B.
C.
D.(0,2]参考答案:C9.已知函数的定义域为,当时,,且对任意的实数x、y,等式恒成立,若数列满足,且,则的值为(
)
A.4017
B.4018
C.4019
D.4021参考答案:D10.设双曲线的离心率为,且它的一条准线为,则此双曲线的方程为
()
A.
B.
C.
D.
参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,已知双曲线:()的一条渐近线与直线:垂直,则实数
▲
.参考答案:212.已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:
据此,可推断抛物线的方程为_____________.参考答案:略13.若,则
.参考答案:14.一次数学考试后,甲,乙,丙,丁四位同学一起去问数学考试成绩,数学老师对他们说:甲乙两位同学考试分数之和与丙丁两位同学考试分数之和相等;乙同学考试分数介于丙丁两位同学考试分数之间;丙同学考试分数不是最高的;丁同学考试分数不是最低的.由此可以判断分数最高的同学是__________.参考答案:丁分析:由甲乙两位同学考试分数之和与丙丁两位同学考试分数之和相等,将四人分数从大到小排列可得甲,乙在两端或丙,丁在两端,再结合乙同学考试分数介于丙丁两位同学考试分数之间可得丙丁在两端,最后根据丙同学考试分数不是最高的可得最高分的同学为丁.详解:将四人分数从大到小排列,∵甲乙两位同学考试分数之和与丙丁两位同学考试分数之和相等,∴甲,乙在两端或丙,丁在两端,即甲乙最大或最小、丙丁最大或最小又∵乙同学考试分数介于丙丁两位同学考试分数之间,∴丙丁最大或最小又∵丙同学考试分数不是最高的,丁同学考试分数不是最低的∴分数最高的同学是丁,故答案为丁.点睛:本题考查简单的合理推理,考查推理论证能力等基础知识,解答此题的关键是逐条进行分析,排除,是基础题.15.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成;图(2)中的三视图表示的实物为.参考答案:(1)4
(2)圆锥略16.已知,抛物线上的点到直线的最段距离为__________。参考答案:
解析:直线为,设抛物线上的点
17.已知复数z1=-2+i,z2=a+2i(i为虚数单位,aR).若z1z2为实数,则a的值为 .参考答案:4三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=-(5-2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.参考答案:19.已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(1)当a=-时,讨论函数f(x)的单调性;(2)若函数f(x)仅在x=0时处有极值,求a的取值范围;(3)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.参考答案:(1)f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).…………1分当a=-时,f′(x)=x(4x2-10x-4)=2x(2x-1)(x-2).令f′(x)=0,解得x1=0,x2=,x2=2.…………1分当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0)02(2,+∞)f′(x)-0+0-0+f(x)↘极小值↗极大值↘极小值↗所以f(x)在(0,),(2,+∞)内是增函数,在(-∞,0),(,2)内是减函数.……………4分
(2)f′(x)=x(4x3+3ax+4),显然x=0不是方程4x3+3ax+4=0的根.为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0,即有Δ=9a2-64≤0.………2分解此不等式,得-≤a≤.这时,f(0)=b是唯一极值.因此满足条件的a的取值范围是[-,].
……2分(3)由条件a∈[-2,2],可知Δ=9a2-64<0,从而4x2+3ax+4>0恒成立.当x<0时,f′(x)<0;当x>0时,f′(x)>0.因此函数f(x)在[-1,1]上的最大值是f(1)与f(-1)两者中的较大者.
………2分为使对任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,当且仅当即在a∈[-2,2]上恒成立.所以b≤-4,因此满足条件的b的取值范围是(-∞,-4].
………2分
略20.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C的方程.参考答案:【考点】椭圆的标准方程;椭圆的简单性质.【分析】画出图形,结合图形以及椭圆的定义与性质,求出a、b的值,即可写出椭圆的方程.【解答】解:如图所示,设椭圆的长轴是2a,短轴是2b,焦距是2c;则离心率e==,∴4a=|AF1|+|AF2|+|BF1|+|BF2|=16;∴a=4,∴c=×4=2,∴b2=a2﹣c2=42﹣=8;∴椭圆的方程是.21.已知椭圆C:的离心率为,且过点P(1,),F为其右焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点A(4,0)的直线l与椭圆相交于M,N两点(点M在A,N两点之间),若△AMF与△MFN的面积相等,试求直线l的方程.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆C:的离心率为,椭圆方程可化为,又点P(1,)在椭圆上,即可求得椭圆方程;(Ⅱ)易知直线l的斜率存在,设l的方程为y=k(x﹣4),与椭圆方程联立,借助于韦达定理,及△AMF与△MFN的面积相等,即可求得直线l的方程.【解答】解:(Ⅰ)∵椭圆C:的离心率为,∴,所以a=2c,b=c.…设椭圆方程为,又点P(1,)在椭圆上,所以,解得c=1,…所以椭圆方程为.…(Ⅱ)易知直线l的斜率存在,设l的方程为y=k(x﹣4),…由,消去y整理,得(3+4k2)x2﹣32k2x+64k2﹣12=0,…由题意知△=(32k2)2﹣4(3+4k2)(64k2﹣12)>0,解得.…设M(x1,y1),N(x2,y2),则①,②.因为△AMF与△MFN的面积相等,所以|AM|=|MN|,所以2x1=x2+4③…由①③消去x2得x1=④将x2=2x1﹣4代入②得x1(2x1﹣4)=⑤将④代入⑤,整理化简得36k2=5,解得,经检验成立.…所以直线l的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年可变电阻项目可行性研究报告
- 《综放工作面上覆岩层运动规律及支架选型研究》
- 2024年卸荷阀组项目可行性研究报告
- 2025年度新媒体品牌形象塑造及推广合同2篇
- 2024年医生凳项目可行性研究报告
- 2025年度信用借款利率调整及还款条款合同3篇
- 2025年度弱电智能化系统集成与调试合同书2篇
- 2021年高考语文考点总动员专题74-评价文章的思想内容和作者的观点态度之借古讽今(解析版)
- 2024年武汉市蔡甸区中医医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 长大后的心酸的句子
- 安全操作规程(供参考)(公示牌)
- 2022年公司出纳个人年度工作总结
- 蓄电池检查和维护
- 职业安全健康现场检查记录表参考范本
- 口袋妖怪白金二周目图文攻略(精编版)
- 安全风险研判与承诺公告制度管理办法(最新)
- 体育与健康课一年级(水平一)课时教案全册
- SAP-ABAP-实用培训教程
- 配电房施工组织设计方案(土建部分)
- 国家开放大学电大专科《英语教学法》2023-2024期末试题及答案(试卷代号:2145)
- 管桩水平承载力计算
评论
0/150
提交评论