版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市丹阳三中学2024届数学九上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在中,已知点在上,点在上,,,下列结论中正确的是()A. B. C. D.2.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.100° B.130°C.50° D.65°3.的值等于()A. B. C. D.4.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4) B.(3,3) C.(3,1) D.(4,1)5.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有()个A. B. C. D.6.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴的交点A、B的横坐标分别为﹣1和3,则函数值y随x值的增大而减小时,x的取值范围是()A.x<1 B.x>1 C.x<2 D.x>27.若不等式组无解,则的取值范围为()A. B. C. D.8.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm9.下列命题中,属于真命题的是()A.对角线互相垂直的四边形是平行四边形 B.对角线互相垂直平行的四边形是菱形C.对角线互相垂直且相等的四边形是矩形 D.对角线互相平分且相等的四边形是正方形10.下列二次根式能与合并的是()A. B. C. D.11.用配方法解方程时,原方程可变形为()A. B. C. D.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.二、填空题(每题4分,共24分)13.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是____.14.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是______.15.已知抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,设关于x的一元二次方程(1﹣3m)x2﹣2x﹣1=0的两根分别为x1、x2,若﹣1<x1<0,x2>2,则m的取值范围为_____.16.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.17.如图,若抛物线与直线交于,两点,则不等式的解集是______.18.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为____米.三、解答题(共78分)19.(8分)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?20.(8分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?21.(8分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.22.(10分)若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:,.我们把它们称为根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:AB=====请你参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,直接写出b2-4ac的值;(2)当△ABC为等腰三角形,且∠ACB=120°时,直接写出b2-4ac的值;(3)设抛物线y=x2+mx+5与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=120°.23.(10分)爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣1,0,1且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为.(1)请你帮他们用树状图或列表法表示所有可能出现的结果;(2)求满足关于x的方程没有实数根的概率.24.(10分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.(1)填表:每天的销售量/台每台销售利润/元降价前8400降价后(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?25.(12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.26.已知抛物线y=x2﹣2ax+m.(1)当a=2,m=﹣5时,求抛物线的最值;(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.
参考答案一、选择题(每题4分,共48分)1、B【分析】由,得∠CMN=∠CNM,从而得∠AMB=∠∠ANC,结合,即可得到结论.【题目详解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故选B.【题目点拨】本题主要考查相似三角形的判定定理,掌握“对应边成比例,夹角相等的两个三角形相似”是解题的关键.2、B【分析】根据三角形的内切圆得出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【题目详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=∠ABC,∠OCB=∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【题目点拨】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.3、B【解题分析】根据特殊角的三角函数值求解.【题目详解】.
故选:B.【题目点拨】本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.4、A【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【题目详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【题目点拨】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.5、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案.【题目详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【题目点拨】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.6、A【分析】首先根据抛物线与坐标轴的交点确定对称轴,然后根据其开口方向确定当x满足什么条件数值y随x值的增大而减小即可.【题目详解】∵二次函数的图象与x轴的交点A、B的横坐标分别为﹣1、3,∴AB中点坐标为(1,0),而点A与点B是抛物线上的对称点,∴抛物线的对称轴为直线x=1,∵开口向上,∴当x<1时,y随着x的增大而减小,故选:A.【题目点拨】本题考查了二次函数的性质,掌握二次函数的性质以及判断方法是解题的关键.7、A【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.【题目详解】解不等式,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选A.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、A【解题分析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.9、B【分析】直接利用平行四边形、矩形、菱形、正方形的判定方法分别判断得出答案.【题目详解】解:A、对角线互相垂直的四边形是平行四边形,错误,不合题意B、对角线互相垂直的平行四边形是菱形,正确,是真命题;C、对角线互相平分且相等的四边形是矩形,本选项错误,不合题意;D、对角线互相平分且相等的四边形应是矩形,本选项错误,不合题意;故选:B.【题目点拨】此题主要考查了命题与定理,正确掌握特殊四边形的判定方法是解题关键.10、C【分析】化为最简二次根式,然后根据同类二次根式的定义解答.【题目详解】解:的被开方数是3,而=、=2、是最简二次根式,不能再化简,以上三数的被开方数分别是2、2、15,所以它们不是同类二次根式,不能合并,即选项A、B、D都不符合题意,=2的被开方数是3,与是同类二次根式,能合并,即选项C符合题意.故选:C.【题目点拨】本题考查同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.11、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【题目详解】故选:B.【题目点拨】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.12、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【题目详解】由勾股定理得,,则,故选:B.【题目点拨】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.二、填空题(每题4分,共24分)13、.【分析】用列表法或画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率.【题目详解】解:画树状图如下:
∵一共有6种情况,两个球都是白球有2种,
∴P(两个球都是白球),
故答案为:.【题目点拨】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14、(3,0)【分析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.【题目详解】把点(1,0)代入抛物线y=x2-4x+中,得m=6,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为(3,0).【题目点拨】本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.15、﹣<m<【分析】首先由抛物线开口向上可得:1﹣3m>0,再由1<x1<0可得:2>3m,最后由x2>2可得:1﹣3m<,由以上三点即可求出m的取值范围.【题目详解】∵抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,∴1﹣3m>0,①∵﹣1<x1<0,∴当x=﹣1时,y>0,即2>3m,②∵x2>2,∴当x=2时,y<0,即1﹣3m<,③由①②③可得:﹣<m<,故答案为:﹣<m<.【题目点拨】本题考查了抛物线与x轴的交点的问题,解题时应掌握△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.16、【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点B2019的坐标.【题目详解】∵过点A1作x轴的垂线交过原点与x轴夹角为的直线l于点B1,OA1=2,∴∠B1OA1=60,∴∠OB1A1=30∴OB1=OA1=4,B1A1=∴B1(2,)∴直线y=x,以原O为圆心,OB1长为半径画弧x轴于点A2,则OA2=OB1,∵OA2=4,∴点A2的坐标为(4,0),∴B2的坐标为(4,4),即(22,22×),OA3=∴点A3的坐标为(8,0),B3(8,8),……,以此类推便可得出点A2019的坐标为(22019,0),点B2019的坐标为;故答案为:.【题目点拨】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.17、【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【题目详解】解:设,,∵∴,∴即二次函数值小于一次函数值,∵抛物线与直线交点为,,∴由图象可得,x的取值范围是.【题目点拨】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.18、2【分析】根据题意可知,本题考查相似三角形性质,根据中心投影的特点和规律以及相似三角形性质,运用相似三角形对应边成比例进行求解.【题目详解】解:根据题意可知当小颖在BG处时,∴,即∴AP=6当小颖在DH处时,∴,即∴∴DE=2故答案为:2【题目点拨】本题考查了中心投影的特点和规律以及相似三角形性质的运用,解题关键是运用相似三角形对应边相等.三、解答题(共78分)19、(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率;(2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【题目详解】解:(1)设这两年藏书的年均增长率是,,解得,,(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有(万册),到2018年底中外古典名著的册数占藏书总量的百分比是:,答:到2018年底中外古典名著的册数占藏书总量的10%.【题目点拨】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.20、(1)y=﹣2x2+400x+25000,0<x≤1,且x为正整数;(2)件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元;(3)每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元【分析】(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,每件商品的售价每上涨1元,则每个月少卖2件,根据月利润=单件利润×数量,则可以得到月销售利润y的函数关系式;(2)由月利润的函数表达式y=﹣2x2+400x+25000,配成顶点式即可;(3)当月利润y=40000时,求出x的值,结合(1)中的取值范围即可得.【题目详解】解:(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,由题意得:y=(130﹣80+x)(500﹣2x)=﹣2x2+400x+25000∵每件售价不能高于240元∴130+x≤240∴x≤1∴y与x的函数关系式为y=﹣2x2+400x+25000,自变量x的取值范围为0<x≤1,且x为正整数;故答案为:y=﹣2x2+400x+25000;0<x≤1.(2)∵y=﹣2x2+400x+25000=﹣2(x﹣100)2+45000∴当x=100时,y有最大值45000元;∴每件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元,故答案为:每件商品的涨价100元时,月利润最大是45000元;(3)令y=40000,得:﹣2x2+400x+25000=40000解得:x1=50,x2=150∵0<x≤1∴x=50,即每件商品的涨价为50元时,每个月的利润恰为40000元,由二次函数的性质及问题的实际意义,可知当50≤x≤1,且x为正整数时,每个月的利润不低于40000元.∴每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元,故答案为:每件商品的涨价为50元;50≤x≤1;【题目点拨】本题考查了二次函数的实际应用,方案设计类营销问题,二次函数表达式的求解,二次函数顶点式求最值问题,由函数值求自变量的值,掌握二次函数的实际应用是解题的关键.21、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解题分析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.22、(1)4;(2);(3)抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由90°变为120°.【分析】(1)根据上述结论及直角三角形的性质列出等式,计算出即可;(2)根据上述结论及含120°的等腰三角形的边角关系,列出方程,解出方程即可;(3)根据(1)中结论,计算出m的值,设出平移后的函数解析式,根据(2)中结论,列出等量关系即可解出.【题目详解】解:(1)由y=ax2+bx+c(a≠0)可知顶点C∵,∴当△ABC为等腰直角三角形时,根据直角三角形斜边上的中线等于斜边的一半可知:=,化简得故答案为:4(2)由y=ax2+bx+c(a≠0)可知顶点C如图,过点C作CD⊥AB交AB于点D,∵∠ACB=120°,∴∠A=30°∵tan30°=,即,又因为,∴化简得故答案为:(3)∵因为向左或向右平移时的度数不变,所以只需将抛物线向上或向下平移使,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线的解析式为:,平移后,所以,抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由变为.【题目点拨】本题考查二次函数与几何的综合应用题,难度适中,关键是能够根据特殊三角形的性质列出关系式.23、(1)见解析(2)【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得满足关于x的方程没有实数解的有:(-1,1),(0,1),(1,1),再利用概率公式即可求得答案.【题目详解】(1)画树状图得:则共有9种等可能的结果;(2)方程没有实数解,即△=p−4q<0,由(1)可得:满足△=p−4q<0的有:(−1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为:【题目点拨】此题考查列表法与树状图法,根的判别式,掌握运算法则是解题关键24、(1),;(2)1.【分析】(1)利润=一台冰箱的利润×销售数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量会提高;(2)根据每台的利润×销售数量列出函数关系式,再根据二次函数的性质,求利润的最大值.【题目详解】解:(1)降价后销售数量为;降价后的利润为:400-x,故答案为:,;(2)设总利润为y元,则∵,开口向下∴当时,最大此时售价为(元)答:每台冰箱的实际售价应定为1元时,利润最大.【题目点拨】本题考查了二次函数的实际应用中的销售问题,解题的关键是分析题意,找出关键的等量关系,列出函数关系式.25、(1)1401;(2)w外=x2+(130-a)x;(3)a=2;(4)见解析【分析】(1)将x=1000代入函数关系式求得y,根据等量关系“利润=销售额-成本-广告费”求得w内;
(2)根据等量关系“利润=销售额-成本-广告费”,“利润=销售额-成本-附加费”列出两个函数关系式;
(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值;
(4)根据x=3000,即可求得w内的值和w外关于a的一次函数式,即可解题.【题目详解】解:(1))
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度二手房买卖合同权属变更登记合同3篇
- 2025版绿色建筑评价标准实施施工总承包管理合同范本3篇
- 电力试验合同
- 测量专业的实习报告范文8篇
- 超市铺货合同
- 2025年度绿色节能家装水电施工总承包协议2篇
- 2025年度城市绿化工程合同栽植养护服务招标书3篇
- 北京政法职业学院《SSM框架综合设计》2023-2024学年第一学期期末试卷
- 北京邮电大学世纪学院《医学细胞生物学B》2023-2024学年第一学期期末试卷
- 2025年度数据中心UPS不间断电源系统安全评估合同3篇
- 安全安全投入台账
- 曳引驱动电梯检验规程及验收规范-电梯安装含修理许可用
- 生产企业自行车编码管理实施规则
- 火力发电厂有关职业病的危害及防护
- 民主测评票(三种样式)
- 班车安全检查表(2015-7-14)V3 0 (2)
- 一、 行业协会申请设立分支机构、代表机构应提交的文件:
- 幼儿园幼儿园理事会成员一览表
- 学生对课堂教学满意度调查
- 住房公积金中心窗口人员个人工作总结
- 集成电路单粒子效应评估技术研究PPT课件
评论
0/150
提交评论